J. Math. Soc. Japan Vol. 38, No. 3, 1986

On removability of sets for holomorphic and harmonic functions

Dedicated to Professor Yukio Kusunoki on his sixtieth birthday

By Yoshihiro MIZUTA

(Received July 30, 1984) (Revised Jan. 25, 1985)

1. Introduction.

Let W be an open set in the complex plane C. For a function f on W, denote by S(f) the set of all points at which f fails to admit a complex derivative; as noted in Kaufman [4], S(f) is a Borel subset of W if f is a Borel measurable function on W.

We say that a function h on the interval $[0, \infty)$ is a measure function if h(0)=0, h(r)>0 for r>0, h is nondecreasing on $[0, \infty)$ and further

$$h(2r) \leq \text{const.} h(r) \quad \text{for } r > 0$$

(cf. Carleson [2]). We denote by Λ_h the Hausdorff measure associated with the measure function h, which is defined by

$$\Lambda_h(E) = \lim_{\delta \downarrow 0} \inf \left\{ \sum_{j=1}^{\infty} h(r_j) \ ; \ r_j \leq \delta, \ \bigcup_{j=1}^{\infty} B(z_j, r_j) \supset E \right\}$$

for a set *E*, where B(z, r) denotes the open disc with center at *z* and radius *r*. If $h(r)=r^{\alpha}$, $\alpha>0$, then we shall write Λ_{α} for Λ_{h} .

Let $1 \le p \le \infty$ and 1/p + 1/p' = 1. For a measure function h and a locally integrable (Borel) function f on W, define

$$F(z) = \sup_{B} r^{-1-2/p} h(r)^{-1/p'} \inf_{g} \int_{B} |f(w) - g(w)| d\Lambda_{2}(w),$$

where the supremum is taken over all open discs B with radius r such that $z \in B \subset W$ and the infimum is taken over all functions g which is holomorphic in B.

Our first aim is to establish the following result.

THEOREM 1. Suppose $F \in L^p(W)$.

(i) If $p < \infty$, $\lim_{r \downarrow 0} r^{-2}h(r) = \infty$ and $\Lambda_h(S(f)) < \infty$, then f can be corrected on a set of measure zero to be holomorphic in W.