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1. Introduction.

Let $W$ be an open set in the complex plane $C$. For a function $f$ on $W$,

denote by $S(f)$ the set of all points at which $f$ fails to admit a complex deri-
vative; as noted in Kaufman [4], $S(f)$ is a Borel subset of $W$ if $f$ is a Borel
measurable function on $W$.

We say that a function $h$ on the interval $[0, \infty$ ) is a measure function if
$h(O)=0,$ $h(r)>0$ for $r>0,$ $h$ is nondecreasing on $[0, \infty$ ) and further

$h(2r)\leqq const$ . $h(r)$ for $r>0$

(cf. Carleson [2]). We denote by $\Lambda_{h}$ the Hausdorff measure associated with the
measure function $h$ , which is defined by

$\Lambda_{h}(E)=\lim_{\delta\downarrow 0}$ inf $\{\sum_{j=1}^{\infty}h(r_{j})$ ; $r_{j} \leqq\delta,\bigcup_{j=1}^{\infty}B(z_{j}, r_{j})\supset E\}$

for a set $E$ , where $B(z, r)$ denotes the open disc with center at $z$ and radius $r$ .
If $h(r)=r^{a},$ $\alpha>0$ , then we shall write $\Lambda_{a}$ for $\Lambda_{h}$ .

Let $1\leqq p\leqq\infty$ and $1/p+1/P’=1$ . For a measure function $h$ and a locally
integrable (Borel) function $f$ on $W$, define

$F(z)= \sup_{B}r^{-1- 2/p}h(r)^{-1/p’}\inf_{g}\int_{B}|f(w)-g(w)|d\Lambda_{2}(w)$ ,

where the supremum is taken over all open discs $B$ with radius $r$ such that
$z\in B\subset W$ and the infimum is taken over all functions $g$ which is holomorphic
in $B$ .

Our first aim is to establish the following result.

THEOREM 1. Suppose $F\in L^{p}(W)$ .
(i) If $p<\infty,$ $\lim_{r\downarrow 0}r^{-2}h(r)=\infty$ and $\Lambda_{h}(S(f))<\infty$ , then $f$ can be corrected on

a set of measure zero to be holomorPhic in $W$.


