Gap theorems for minimal submanifolds of Euclidean space

By Atsushi Kasue

(Received March 26, 1984)
(Revised Dec. 25, 1984)

0 . Introduction.

The purpose of the present paper is to prove the following
TheOrem A. Let M be a connected, complete minimal submanifold properly immersed into Euclidean space \boldsymbol{R}^{N}. Suppose that

$$
\begin{equation*}
\text { the scalar curvature of } M \text { at } x \geqq-\frac{A}{1+|x|^{2+\varepsilon}} \tag{0.1}
\end{equation*}
$$

for some positive constants A and ε, where $|x|$ stands for the Euclidean norm of $x \in M \subset \boldsymbol{R}^{N}$. Then:
(I) M is an m-plane if $m=\operatorname{dim} M \geqq 3$ and M has one end, or if $m=2, \varepsilon \geqq 2$ and M has one end.
(II) M is a hyperplane if $m=N-1,2+\varepsilon>2 m$ and M is embedded into \boldsymbol{R}^{N}.
(III) M is a catenoid if $m \geqq 3, m=N-1$ and M has two ends, or if $m=2$, $N=3$ and M has two embedded ends.

Since an area-minimizing hypersurface properly embedded into R^{N} has one end (cf. [1]), we have the following

Corollary 1. Let M be an area-minimizing hypersurface properly embedded into \boldsymbol{R}^{N} satisfying condition (0.1). Then M is a hyperplane of \boldsymbol{R}^{N}.

In case M is a complex submanifold properly embedded into C^{N}, condition (1.0) will imply that the volume of the exterior metric ball $M \cap B_{e}(r)$ with radius r grows like $r^{2 m}\left(m=\operatorname{dim}_{c} M\right)$ (cf. Lemma 2(1)), and hence by a theorem of Stoll [16], M turns out to be algebraic. In particular, M has one end if $m \geqq 2$ (cf. Lefschetz hyperplane theorem). Thus we have proven

Corollary 2. Let M be a complex submanifold properly embedded into \boldsymbol{C}^{N}.
This research was supported partly by the Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture.

