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0. Introduction.
The purpose of the present paper is to prove the following

THEOREM A. Let M be a connected, complete minimal submanifold properly
immersed into Euclidean space R¥. Suppose that

A

> =
0.1) the scalar curvature of M at x = [ERpAEE

for some positive constants A and e, where | x| stands for the Euclidean norm of
xEMCRY. Then:

(1) M is an m-plane if m=dim M=3 and M has one end, or if m=2, e=2
and M has one end.

(L) M is a hyperplane if m=N—1, 24e>2m and M is embedded into R¥.

() M is a catenoid if m=3, m=N—1 and M has two ends, or if m=2,
N=3 and M has two embedded ends.

Since an area-minimizing hypersurface properly embedded into R¥ has one
end (cf. [1]), we have the following

COROLLARY 1. Let M be an area-minimizing hypersurface properly embedded
into RY satisfying condition (0.1). Then M is a hyperplane of R".

In case M is a complex submanifold properly embedded into C?¥, condition
(1.0) will imply that the volume of the exterior metric ball MN\B,(r) with radius
r grows like 7*™ (m=dim¢M) (cf. Lemma 2(1)), and hence by a theorem of
Stoll [16], M turns out to be algebraic. In particular, M has one end if m=2
(cf. Lefschetz hyperplane theorem). Thus we have proven

COROLLARY 2. Let M be a complex submanifold properly embedded into C¥.
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