J. Math. Soc. Japan Vol. 38, No. 3, 1986

Gap theorems for minimal submanifolds of Euclidean space

By Atsushi KASUE

(Received March 26, 1984) (Revised Dec. 25, 1984)

0. Introduction.

The purpose of the present paper is to prove the following

THEOREM A. Let M be a connected, complete minimal submanifold properly immersed into Euclidean space \mathbb{R}^{N} . Suppose that

(0.1) the scalar curvature of M at $x \ge -\frac{A}{1+|x|^{2+\varepsilon}}$

for some positive constants A and ε , where |x| stands for the Euclidean norm of $x \in M \subset \mathbb{R}^N$. Then:

(I) M is an m-plane if $m=\dim M \ge 3$ and M has one end, or if m=2, $\varepsilon \ge 2$ and M has one end.

(II) M is a hyperplane if m=N-1, $2+\varepsilon>2m$ and M is embedded into \mathbb{R}^{N} .

(III) M is a catenoid if $m \ge 3$, m = N-1 and M has two ends, or if m = 2, N=3 and M has two embedded ends.

Since an area-minimizing hypersurface properly embedded into \mathbb{R}^N has one end (cf. [1]), we have the following

COROLLARY 1. Let M be an area-minimizing hypersurface properly embedded into \mathbb{R}^{N} satisfying condition (0.1). Then M is a hyperplane of \mathbb{R}^{N} .

In case M is a complex submanifold properly embedded into \mathbb{C}^N , condition (1.0) will imply that the volume of the exterior metric ball $M \cap B_e(r)$ with radius r grows like r^{2m} ($m=\dim_c M$) (cf. Lemma 2(1)), and hence by a theorem of Stoll [16], M turns out to be algebraic. In particular, M has one end if $m \ge 2$ (cf. Lefschetz hyperplane theorem). Thus we have proven

COROLLARY 2. Let M be a complex submanifold properly embedded into C^{N} .

This research was supported partly by the Grant-in-Aid for Scientific Research, Ministry of Education, Science and Culture.