On pluricanonical maps for $\mathbf{3}$-folds of general type

By Kenji Matsuki

(Received May 10, 1984)
(Revised Nov. 24, 1984)

§ 0. Introduction.

Throughout this paper, we fix the complex number field \boldsymbol{C} as the ground field. The purpose of this paper is to prove the following

Main Theorem. Let X be a nonsingular projective 3-fold whose canonical divisor K_{X} is nef and big (cf. M. Reid [12] or §1). Then
(i) $\Phi_{17 K_{X} \mid}$ is birational with the possible exceptions of
a) $\chi\left(\Theta_{X}\right)=0$ and $K_{X}^{3}=2$, or
b) $\left|3 K_{X}\right|$ is composed of pencils, i.e., $\operatorname{dim} \Phi_{13 K_{X 1}}(X)=1$,
(ii) $\Phi_{\mid n K_{X}{ }^{\prime}}$ is birational for $n \geqq 8$. Further if $\chi\left(\Theta_{X}\right)<0$, e.g. when K_{X} is ample, $\Phi_{\mid n K_{X^{1}}}$ is birational for $n \geqq 7$.
X. Benveniste [1] proved that $\Phi_{\left|n K_{X}\right|}$ is birational for $n \geqq 9$ under the same assumption as ours. Our proof follows mainly his ideas but improves the result to the extent that it guarantees $\Phi_{\mid n K_{X}}$ being birational for $n \geqq 7$ if $\chi\left(\Theta_{X}\right)<0$.

The author is grateful to Prof. X. Benveniste who was kind enough to send us his preprints about this topic.

§ 1. Preliminaries.

Let X be a nonsingular complete variety, and $D \in \operatorname{Div}(X) \otimes \boldsymbol{Q}$, where $\operatorname{Div}(X)$ is a free abelian group generated by Weil divisors on X. Then D is called nef if $D \cdot C \geqq 0$ for any curve C on X, and big if $\kappa(D, X)=\operatorname{dim} X$ (cf. Iitaka [6]), respectively. We denote the linear equivalence and the numerical equivalance by \sim and \approx, respectively. For $D \in \operatorname{Div}(X)$ with $h^{0}\left(X, \mathcal{O}_{X}(D)\right) \neq 0, \Phi_{|D|}$ denotes the rational map associated with the complete linear system $|D|$.

Proposition 1. Let X be a nonsingular complete variety, and $D \in \operatorname{Div}(X) \otimes \boldsymbol{Q}$. Assume the following two conditions:
(i) D is nef and big,
(ii) the fractional part of D has the support with only normal crossings.

Then

$$
H^{i}\left(X, \mathcal{O}_{X}\left(\ulcorner D\urcorner+K_{X}\right)\right)=0 \quad \text { for } i>0,
$$

