On pluricanonical maps for 3-folds of general type

By Kenji MATSUKI

(Received May 10, 1984) (Revised Nov. 24, 1984)

§0. Introduction.

Throughout this paper, we fix the complex number field C as the ground field. The purpose of this paper is to prove the following

MAIN THEOREM. Let X be a nonsingular projective 3-fold whose canonical divisor K_X is nef and big (cf. M. Reid [12] or § 1). Then

(i) $\Phi_{{}_{17K_{X^+}}}$ is birational with the possible exceptions of

a) $\chi(\mathcal{O}_X)=0$ and $K_X^3=2$, or

b) $|3K_X|$ is composed of pencils, i.e., dim $\Phi_{|3K_X|}(X)=1$,

(ii) $\Phi_{|nK_X|}$ is birational for $n \ge 8$. Further if $\chi(\mathcal{O}_X) < 0$, e.g. when K_X is ample, $\Phi_{|nK_X|}$ is birational for $n \ge 7$.

X. Benveniste [1] proved that $\Phi_{|nK_X|}$ is birational for $n \ge 9$ under the same assumption as ours. Our proof follows mainly his ideas but improves the result to the extent that it guarantees $\Phi_{|nK_X|}$ being birational for $n \ge 7$ if $\chi(\mathcal{O}_X) < 0$.

The author is grateful to Prof. X. Benveniste who was kind enough to send us his preprints about this topic.

§1. Preliminaries.

Let X be a nonsingular complete variety, and $D \in \text{Div}(X) \otimes Q$, where Div(X)is a free abelian group generated by Weil divisors on X. Then D is called nef if $D \cdot C \ge 0$ for any curve C on X, and big if $\kappa(D, X) = \dim X$ (cf. litaka [6]), respectively. We denote the linear equivalence and the numerical equivalance by \sim and \approx , respectively. For $D \in \text{Div}(X)$ with $h^0(X, \mathcal{O}_X(D)) \neq 0$, $\Phi_{|D|}$ denotes the rational map associated with the complete linear system |D|.

PROPOSITION 1. Let X be a nonsingular complete variety, and $D \in \text{Div}(X) \otimes Q$. Assume the following two conditions:

- (i) D is nef and big,
- (ii) the fractional part of D has the support with only normal crossings. Then

 $H^{i}(X, \mathcal{O}_{X}(\lceil D \rceil + K_{X})) = 0$ for i > 0,