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\S 0. Introduction.

In this paper we consider symbols $P(x, \xi)$ on $R^{n}$ whose derivatives do not
necessarily converge to $0$ as $|\xi|arrow\infty$ , and we give some sufficient conditions for
the $L^{p}$-boundedness of the associated pseudodifferential operators $P(x, D)$ . Some
modifications of the Fourier multiplier theorem of Mikhlin type and Stein type
are also obtained, together with those of the Littleweed-Paley decomposition of
the space $L^{p}(R^{n})$ . Part of the results of this paper has been announced in
Yamazaki [15].

The $L^{p}$-boundedness of pseudodifferential operators on $R^{n}$ with non-smooth
symbols has been studied by many authors. See Mossaheb-Okada [8], Nagase
[10], Coifman-Meyer [4], Muramatu-Nagase [9] and Bourdaud [2]. They con-
sidered symbols $P(x, \xi)$ on $R^{n}$ satisfying the estimate $|\partial_{\xi}^{a}P(x, \xi)|\leqq C_{\alpha}(1+|\xi|)^{-|\alpha|}$

for every multi-index $\alpha$ satisfying $|\alpha|\leqq n+1$ (or $|\alpha|\leqq n+2$), and obtained the
$L^{p}$-boundedness of the associated pseudodifferential operators $P(x, D)$ defined by
the formula

$P(x, D)u(x)= \int e^{ix\cdot\xi}P(x, \xi)\text{\^{u}}(\xi)\overline{d}\xi$

under some assumptions on the regularity of the symbol $P(x, \xi)$ with respect to
$x$ . Here $\overline{d}\xi$ denotes $(2\pi)^{-n}d\xi$ , and \^u $(\xi)$ denotes the Fourier transform of $u(x)$ .
Here and hereafter we assume $1<p<\infty$ and denote $L^{p}=L^{p}(R^{n})$ , and the in-
tegrals are done over $R^{n}$ unless otherwise specified.

On the other hand, Stein [11] proved the $L^{p}$-boundedness of the Fourier
multiplier $m(\xi)$ satisfying the estimates $|\xi^{\alpha}\partial_{\xi}^{\alpha}m(\xi)|\leqq C$ for all $\alpha\in N^{n}$ such that
$\alpha_{l}=0$ or 1 for every $l=1,2,$ $\cdots$ , $n$ . Here the space $R^{n}$ is regarded as the direct
product of $n$ copies of $R$ .

Fefferman [6] and Fefferman-Stein [7] regarded $R^{n}$ as $R^{n-l}\cross R^{l}$ , and ob-
tained several boundedness properties of the singular integrals with kernels
$K(y, z)(y\in R^{n-l}, z\in R^{l})$ satisfying the estimate $|K(y, z)|\leqq C|y|^{-n+l}|z|^{-l}$ under
some hypotheses.


