The L^p -boundedness of pseudodifferential operators with estimates of parabolic type and product type

By Masao YAMAZAKI

(Received May 18, 1984) (Revised Oct. 12, 1984)

§0. Introduction.

In this paper we consider symbols $P(x, \xi)$ on \mathbb{R}^n whose derivatives do not necessarily converge to 0 as $|\xi| \to \infty$, and we give some sufficient conditions for the L^p -boundedness of the associated pseudodifferential operators P(x, D). Some modifications of the Fourier multiplier theorem of Mikhlin type and Stein type are also obtained, together with those of the Littleweed-Paley decomposition of the space $L^p(\mathbb{R}^n)$. Part of the results of this paper has been announced in Yamazaki [15].

The L^p -boundedness of pseudodifferential operators on \mathbb{R}^n with non-smooth symbols has been studied by many authors. See Mossaheb-Okada [8], Nagase [10], Coifman-Meyer [4], Muramatu-Nagase [9] and Bourdaud [2]. They considered symbols $P(x, \xi)$ on \mathbb{R}^n satisfying the estimate $|\partial_{\xi}^{\alpha}P(x, \xi)| \leq C_{\alpha}(1+|\xi|)^{-|\alpha|}$ for every multi-index α satisfying $|\alpha| \leq n+1$ (or $|\alpha| \leq n+2$), and obtained the L^p -boundedness of the associated pseudodifferential operators P(x, D) defined by the formula

$$P(x, D)u(x) = \int e^{ix\cdot\xi} P(x, \xi)\hat{u}(\xi)d\xi$$

under some assumptions on the regularity of the symbol $P(x, \xi)$ with respect to x. Here $d\xi$ denotes $(2\pi)^{-n}d\xi$, and $\hat{u}(\xi)$ denotes the Fourier transform of u(x). Here and hereafter we assume $1 and denote <math>L^p = L^p(\mathbb{R}^n)$, and the integrals are done over \mathbb{R}^n unless otherwise specified.

On the other hand, Stein [11] proved the L^p -boundedness of the Fourier multiplier $m(\xi)$ satisfying the estimates $|\xi^{\alpha}\partial\xi^m(\xi)| \leq C$ for all $\alpha \in N^n$ such that $\alpha_l = 0$ or 1 for every $l=1, 2, \dots, n$. Here the space \mathbb{R}^n is regarded as the direct product of n copies of \mathbb{R} .

Fefferman [6] and Fefferman-Stein [7] regarded \mathbb{R}^n as $\mathbb{R}^{n-l} \times \mathbb{R}^l$, and obtained several boundedness properties of the singular integrals with kernels K(y, z) $(y \in \mathbb{R}^{n-l}, z \in \mathbb{R}^l)$ satisfying the estimate $|K(y, z)| \leq C|y|^{-n+l}|z|^{-l}$ under some hypotheses.