J. Math. Soc. Japan Vol. 38, No. 1, 1986

Limits on $P(\omega)$ /finite

By Shizuo KAMO

(Received June 18, 1984) (Revised Sept. 17, 1984)

§1. Introduction.

Define the quasi-order \leq^* on $P(\omega)$ by $x \leq^* y$, if $x \setminus y$ is finite. $x <^* y$ means that $x \leq y$ and not $y \leq x$. $x \sim y$ means that $x \leq y$ and $y \leq x$. $x \neq y$ means that not $x \sim y$. For any cardinal κ , a κ -sequence $X = \langle a_{\alpha} | \alpha < \kappa \rangle$ is said to be a κ -limit, if X is a <*-descending sequence and, whenever $y \subset \omega$ and $\forall \alpha < \kappa$ $(y < a_{\alpha}), y \sim \emptyset$. We abbreviate the statement "There is a κ -limit" by $\exists \kappa$ -limit. Since $\exists \kappa$ -limit holds for some cardinal κ , under the continuum hypothesis (CH), ω_1 is the unique cardinal κ such that $\exists \kappa$ -limit. And, if $2^{\omega} = \omega_2$ holds, then the following (A), (B) and (C) are the only possible cases. (A) $\exists \omega_1 \text{-limit} + \neg \exists \omega_2 \text{-limit}$. (B) $\neg \exists \omega_1 \text{-limit} + \exists \omega_2 \text{-limit}$. (C) $\exists \omega_1 \text{-limit} + \exists \omega_2 \text{-limit}$. In fact, each of them is known to be compatible with $2^{\omega} = \omega_2$. If we start with a ground model of CH and add ω_2 Cohen reals, then we get a model of (A) (see [3]). The Martin's Axiom (MA)+ $2^{\omega} = \omega_2$ implies (B). And, if we start with a ground model of (B) and add ω_1 Cohen reals, then we get a model of (C). The existence of κ -limits provides still a few problems when 2^{ω} is much more large. In this paper, we would like to make a contribution to this subject. Since $\exists \kappa$ -limit implies $\exists cf \kappa$ limit, we may restrict our interest to regular cardinals. Our result is the following.

THEOREM 1 (GCH). Let n be a natural number. Let $\kappa_0, \dots, \kappa_n$ and λ be regular cardinals such that $\omega_1 \leq \kappa_0 < \dots < \kappa_n \leq \lambda$. Then, there exists a poset P which satisfies the following (i) \sim (iv).

- (i) P satisfies the countable chain condition (the c.c.c.).
- (ii) $\Vdash_P "2^{\omega} = \check{\lambda}"$.
- (iii) $\forall m \leq n \ (\Vdash_P ``\exists \check{k}_m \text{limit''}).$
- (iv) $\forall \theta$: regular ($\forall m \leq n \ (\theta \neq \kappa_m) \Rightarrow \Vdash_P ``\neg \exists \check{\theta}$ -limit").

The rest of the paper consists of three sections. Section 2 is for preliminaries. Sections 3 and 4 are entirely devoted to the proof of the theorem.