Inverse problems for heat equations on compact intervals and on circles, I

By Takashi SuZUKI

(Received May 18, 1982)
(Revised Aug. 27, 1984)

§ 1. Introduction.

The purpose of the present paper is to study uniqueness of certain inverse problems for heat equations.

For $p \in C^{1}[0,1], h \in \boldsymbol{R}, \quad H \in \boldsymbol{R}$ and $a \in L^{2}(0,1)$, let $\left(E_{p, h, H, a}\right)$ be the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\left(p(x)-\frac{\partial^{2}}{\partial x^{2}}\right) u=0 \quad(0<t<\infty ; 0<x<1) \tag{1.1}
\end{equation*}
$$

with the boundary condition

$$
\begin{equation*}
\left.\left(\frac{\partial u}{\partial x}-h u\right)\right|_{x=0}=\left.\left(\frac{\partial u}{\partial x}+H u\right)\right|_{x=1}=0 \quad(0<t<\infty) \tag{1.2}
\end{equation*}
$$

and with the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=a(x) \quad(0<x<1) . \tag{1.3}
\end{equation*}
$$

As is known, the solution $u=u(t, x)$ exists uniquely for given coefficients and initial value (p, h, H, a). However, let these (p, h, H, a) be unknown, and instead the values $u(t, 0)$ and $u\left(t, x_{0}\right)$ be observed for $t \in\left[T_{1}, T_{2}\right]$ and $x_{0} \in(0,1]$, where $0 \leqq T_{1}<T_{2}<\infty$. Do the data $\left\{u(t, 0), u\left(t, x_{0}\right) \mid T_{1} \leqq t \leqq T_{2}\right\}$ determine (p, h, H, a)? This kind of problem is called an inverse problem, and is formulated more precisely as follows.

Consider the mapping

$$
\begin{equation*}
F^{1}=F_{T_{1}, T_{2}, x_{0}}^{1}: \quad(q, j, J, b) \longmapsto\left\{v(t, 0), v\left(t, x_{0}\right) \mid T_{1} \leqq t \leqq T_{2}\right\}, \tag{1.4.1}
\end{equation*}
$$

where $v=v(t, x)$ is the solution of ($E_{q, j, J, b}$). Let $(p, h, H, a) \in C^{1}[0,1] \times \boldsymbol{R} \times \boldsymbol{R}$ $\times L^{2}(0,1)$ be given and $u=u(t, x)$ be the solution of $\left(E_{p, n, H, a}\right)$. Then the set

$$
\begin{equation*}
\boldsymbol{M}_{p, h, H, a, x_{0}}^{1} \equiv\left(F_{T_{1}, r_{2}, x_{0}}^{1}\right)^{-1}\left(F_{T_{1}, \boldsymbol{r}_{2}, x_{0}}^{1}(p, h, H, a)\right) \tag{1.5.1}
\end{equation*}
$$

denotes the totality of equations ($E_{q, j, J, b}$) whose solutions have the same values as those of u on $\xi=0, x_{0}$. Namely,

