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\S 1. Introduction.

The purpose of the present paper is to study uniqueness of certain inverse
problems for heat equations.

For $p\in C^{1}[0,1]$ , $h\in R$ , $H\in R$ and $a\in L^{2}(0,1)$ , let $(E_{p,h,H,a})$ be the heat
equation

(1.1) $\frac{\partial u}{\partial t}+(p(x)-\frac{\partial^{2}}{\partial_{X^{2}}})u=0$

with the boundary condition

$(0<t<\infty;0<x<1)$

(1.2) $( \frac{\partial u}{\partial x}-hu)|_{x=0}=(\frac{\partial u}{\partial x}+Hu)|_{x=1}=0$ $(0<t<\infty)$

and with the initial condition

(1.3) $u|_{t=0}=a(x)$ $(0<x<1)$ .

As is known, the solution $u=u(t, x)$ exists uniquely for given coefficients and
initial value $(p, h, H, a)$ . However, let these $(p, h, H, a)$ be unknown, and
instead the values $u(t, 0)$ and $u(t, x_{0})$ be observed for $t\in[T_{1}, T_{2}]$ and $x_{0}\in(0,1$],

where $0\leqq T_{1}<T_{2}<\infty$ . Do the data $\{u(t, 0), u(t, x_{0})|T_{1}\leqq t\leqq T_{2}\}$ determine
$(p, h, H, a)$ ? This kind of problem is called an inverse problem, and is for-
mulated more precisely as follows.

Consider the mapping

(1.4.1) $F^{1}=Ff_{1^{T_{2}.x_{0}}}.$ : $(q, j, J, b)-\{v(t, 0), v(t, x_{0})|T_{1}\leqq t\leqq T_{2}\}$ ,

where $v=v(t, x)$ is the solution of $(E_{q,j.J.b})$ . Let $(p, h, H, a)\in C^{1}[0,1]\cross R\cross R$

$\cross L^{2}(0,1)$ be given and $u=u(t, x)$ be the solution of $(E_{p,h.H.a})$ . Then the set

(1.5.1) $M_{p,h,H,a,x_{0}}^{1}\equiv(F_{T_{1},T_{2},x_{0}}^{1})^{-1}(F_{T_{1}.T_{2},x_{0}}^{1}(p, h, H, a))$

denotes the totality of equations $(E_{q,j,J.b})$ whose solutions have the same values
as those of $u$ on $\xi=0,$ $x_{0}$ . Namely,


