Williamson Hadamard matrices and Gauss sums

By Koichi Yamamoto and Mieko Yamada

(Received Jan. 17, 1984)
(Revised July 25, 1984)

§ 1. Williamson Hadamard matrices.

1. Let \mathfrak{A} be a rational division algebra with an antiautomorphism $\tau: \xi \rightarrow \bar{\xi}$ of period two, such that the norm $\xi \bar{\xi}$ is a positive definite quadratic form in the coefficients of ξ with respect to a basis of \mathfrak{A} over \boldsymbol{Q}. Let \mathcal{D} be a maximal order in \mathfrak{A} invariant under τ. An element ε of \mathcal{D} is called a unit if its norm $\varepsilon \bar{\varepsilon}$ equals 1. The set U of all units is finite, and is a subgroup of the multiplicative group \mathfrak{A}^{*} of \mathfrak{N}.

A square matrix H of order n with entries in U is called an Hadamard matrix in \mathfrak{A} if

$$
H H^{*}=n I, \quad H^{*}={ }^{t} \bar{H}
$$

for the unit matrix I.
If $\mathfrak{X}=\boldsymbol{Q}$ the rational number field then $U=\{1,-1\}$ and H is a usual Hadamard matrix. If $\mathfrak{A}=\boldsymbol{Q}(i)$ the Gaussian imaginary quadratic field, then $U=$ $\{ \pm 1, \pm i\}$ and H is called a complex Hadamard matrix. The character table of an abelian group G of order n provides an Hadamard matrix in the cyclotomic field $\boldsymbol{Q}\left(\zeta_{m}\right), \zeta_{m}=e^{2 \pi i / m}$, for the exponent m of G.

In the present paper we deal with rational quaternion field, although some part of the theory is carried over to a generalized quaternion field where the center is the maximal real subfield of a cyclotomic field of order 2^{s}. Thus let $\mathfrak{A}=\boldsymbol{Q}+\boldsymbol{Q} i+\boldsymbol{Q} j+\boldsymbol{Q} k$ with the quaternion units $1, i, j, k$ such that

$$
\begin{gathered}
i^{2}=j^{2}=k^{2}=-1, \\
i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j .
\end{gathered}
$$

We take the Hurwitz quaternion ring as \mathfrak{D}. The ring \mathfrak{D} consists of quaternions $\xi=a+b i+c j+d k$ with

$$
a, b, c, d \in \frac{1}{2} Z, \quad a \equiv b \equiv c \equiv d \quad(\bmod 1) .
$$

The antiautomorphism τ assigns the quaternion conjugate $\bar{\xi}=a-b i-c j-d k$ to ξ, and $\xi \bar{\xi}=a^{2}+b^{2}+c^{2}+d^{2}$. The unit group U consists of 24 elements and contains the quaternion group $U_{0}=\{ \pm 1, \pm i, \pm j, \pm k\}$ as a normal subgroup. It also

