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\S 1. Williamson Hadamard matrices.

1. Let $\mathfrak{U}$ be a rational division algebra with an antiautomorphism $\tau;\xiarrow\overline{\xi}$

of period two, such that the norm $\xi\xi$ is a positive definite quadratic form in the
coefficients of $\xi$ with respect to a basis of $\mathfrak{U}$ over $Q$ . Let $\mathfrak{Q}$ be a maximal order
in $\mathfrak{U}$ invariant under $\tau$ . An element $\epsilon$ of $\mathfrak{Q}$ is called a unit if its norm $\epsilon\overline{\epsilon}$ equals
1. The set $U$ of all units is finite, and is a subgroup of the multiplicative
group $\mathfrak{U}^{*}$ of $\mathfrak{U}$ .

A square matrix $H$ of order $n$ with entries in $U$ is called an Hadamard matrix
in $\mathfrak{A}$ if

$HH^{*}=nI$ , $H^{*}={}^{t}\overline{H}$ ,
for the unit matrix $I$ .

If $\mathfrak{U}=Q$ the rational number field then $U=\{1, -1\}$ and $H$ is a usual Hada-
mard matrix. If $\mathfrak{A}=Q(i)$ the Gaussian imaginary quadratic field, then $U=$

$\{\pm 1, \pm i\}$ and $H$ is called a complex Hadamard matrix. The character table of
an abelian group $G$ of order $n$ provides an Hadamard matrix in the cyclotomic
field $Q(\zeta_{m}),$ $\zeta_{m}=e^{2\pi i/m}$ , for the exponent $m$ of $G$ .

In the present paper we deal with rational quaternion field, although some
part of the theory is carried over to a generalized quaternion field where the
center is the maximal real subfield of a cyclotomic field of order $2^{s}$ . Thus let
$\mathfrak{U}=Q+Qi+Qj+Qk$ with the quaternion units 1, $i,$ $j,$ $k$ such that

$i^{2}=j^{2}=k^{2}=-1$ ,

$ij=-ji=k$ , $jk=-kj=i$ , $ki=-ik=j$ .
We take the Hurwitz quaternion ring as $\mathfrak{Q}$ . The ring $\mathfrak{Q}$ consists of quaternions
$\xi=a+bi+cj+dk$ with

$a,$ $b,$ $c,$
$d \in\frac{1}{2}Z$ , $a\equiv b\equiv c\equiv d$ $(mod 1)$ .

The antiautomorphism $\tau$ assigns the quaternion conjugate $\overline{\xi}=a-bi-cj-dk$ to $\xi$ ,

and $\xi\overline{\xi}=a^{2}+b^{2}+c^{2}+d^{2}$ . The unit group $U$ consists of 24 elements and contains
the quaternion group $U_{0}=\{\pm 1, \pm i, \pm j, \pm k\}$ as a normal subgroup. It also


