Williamson Hadamard matrices and Gauss sums

By Koichi YAMAMOTO and Mieko YAMADA

(Received Jan. 17, 1984) (Revised July 25, 1984)

§1. Williamson Hadamard matrices.

1. Let \mathfrak{A} be a rational division algebra with an antiautomorphism $\tau: \xi \to \overline{\xi}$ of period two, such that the norm $\xi \overline{\xi}$ is a positive definite quadratic form in the coefficients of ξ with respect to a basis of \mathfrak{A} over Q. Let \mathfrak{O} be a maximal order in \mathfrak{A} invariant under τ . An element ε of \mathfrak{O} is called a unit if its norm $\varepsilon \overline{\varepsilon}$ equals 1. The set U of all units is finite, and is a subgroup of the multiplicative group \mathfrak{A}^* of \mathfrak{A} .

A square matrix H of order n with entries in U is called an *Hadamard matrix* in \mathfrak{A} if

$$HH^*=nI, \qquad H^*={}^t\overline{H},$$

for the unit matrix *I*.

If $\mathfrak{A}=\mathbf{Q}$ the rational number field then $U=\{1, -1\}$ and H is a usual Hadamard matrix. If $\mathfrak{A}=\mathbf{Q}(i)$ the Gaussian imaginary quadratic field, then $U=\{\pm 1, \pm i\}$ and H is called a *complex Hadamard matrix*. The character table of an abelian group G of order n provides an Hadamard matrix in the cyclotomic field $\mathbf{Q}(\zeta_m)$, $\zeta_m=e^{2\pi i/m}$, for the exponent m of G.

In the present paper we deal with rational quaternion field, although some part of the theory is carried over to a generalized quaternion field where the center is the maximal real subfield of a cyclotomic field of order 2^s . Thus let $\mathfrak{A}=\mathbf{Q}+\mathbf{Q}i+\mathbf{Q}j+\mathbf{Q}k$ with the quaternion units 1, *i*, *j*, *k* such that

$$i^2 = j^2 = k^2 = -1$$
,
 $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

We take the Hurwitz quaternion ring as \mathbb{O} . The ring \mathbb{O} consists of quaternions $\xi = a + bi + cj + dk$ with

$$a, b, c, d \in \frac{1}{2} \mathbb{Z}, \qquad a \equiv b \equiv c \equiv d \pmod{1}.$$

The antiautomorphism τ assigns the quaternion conjugate $\bar{\xi} = a - bi - cj - dk$ to ξ , and $\xi \bar{\xi} = a^2 + b^2 + c^2 + d^2$. The unit group U consists of 24 elements and contains the quaternion group $U_0 = \{\pm 1, \pm i, \pm j, \pm k\}$ as a normal subgroup. It also