Meromorphic solutions of some nonlinear difference equations of higher order

By Niro Yanagihara

(Received May 4, 1984)

1. Introduction.

Here we will consider the nonlinear difference equation

$$
\begin{equation*}
\alpha_{n} y(x+n)+\alpha_{n-1} y(x+n-1)+\cdots+\alpha_{1} y(x+1)=R(y(x)), \tag{1.1}
\end{equation*}
$$

where $R(y)$ is a rational function of y :

$$
\left\{\begin{array}{l}
R(y)=P(y) / Q(y), \tag{1.2}\\
P(y)=a_{p} y^{p}+\cdots+a_{0}, \\
Q(y)=b_{q} y^{q}+\cdots+b_{0}
\end{array}\right.
$$

in which $\alpha_{n}, \cdots, \alpha_{1} ; a_{p}, \cdots, a_{0} ; b_{q}, \cdots, b_{0}$ are constants, $\alpha_{n} a_{p} b_{q} \neq 0$. We suppose that $P(y)$ and $Q(y)$ are mutually prime. In the sequel, we denote by p and q the degree of the nominator $P(y)$ and of the denominator $Q(y)$, respectively.

We will investigate in this note whether the equation (1.1) admits a meromorphic solution or not. Of course, we mean nontrivial solution, i.e., solution which is not identically equal to a constant.

In [1] and [2], Harris and Sibuya investigated the difference equation

$$
\begin{align*}
\vec{y}(x+1) & =\vec{F}(x, \vec{y}(x)), \tag{1.3}\\
\vec{F}(x, \vec{y}) & =\left(F_{j}\left(x, y_{1}, \cdots, y_{n}\right), \quad j=1, \cdots, n\right), \\
\vec{F}(\infty, \overrightarrow{0}) & =\overrightarrow{0} .
\end{align*}
$$

When F_{j} are rational functions of x, y_{1}, \cdots, y_{n}, then their results imply that the equation (1.3) possesses a meromorphic solution $\vec{y}(x)$ which has an asymptotic expansion

$$
\begin{equation*}
\vec{y}(x) \sim \sum_{m=1}^{\infty} \vec{a}_{m} / x^{m} \tag{1.4}
\end{equation*}
$$

in an angular domain. This is a very general result. But in the present case (1.1), the solution (1.4) obtained by them has coefficients $\vec{a}_{m}=\overrightarrow{0}, m=1,2, \cdots$. Therefore we need somewhat more detailed study of the equation to get nontrivial solutions.

This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540013), Ministry of Education.

