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1. Introduction.

Here we will consider the nonlinear difference equation

(1.1) $\alpha_{n}y(x+n)+\alpha_{n-1}y(x+n-1)+$ $+\alpha_{1}y(x+1)=R(y(x))$ ,

where $R(y)$ is a rational function of $y$ :

(1.2) $\{\begin{array}{l}R(y)=P(y)/Q(y),P(y)=a_{p}y^{p}+\cdots+a_{0},Q(y)=b_{q}y^{q}+\cdots+b_{0},\end{array}$

in which $\alpha_{n},$
$\cdots$ , $\alpha_{1}$ ; $a_{p},$

$\cdots$ , $a_{0}$ ; $b_{q}$ , , , $b_{0}$ are constants, $\alpha_{n}a_{p}b_{q}\neq 0$ . We suppose
that $P(y)$ and $Q(y)$ are mutually prime. In the sequel, we denote by $p$ and $q$

the degree of the nominator $P(y)$ and of the denominator $Q(y)$ , respectively.
We will investigate in this note whether the equation (1.1) admits a mero-

morphic solution or not. Of course, we mean nontrivial solution, $i.e.$ , solution
which is not identically equal to a constant.

In [1] and [2], Harris and Sibuya investigated the difference equation

(1.3) $\vec{y}(x+1)=\vec{F}(x,\vec{y}(x))$ ,
$\vec{F}(x,\vec{y})=(F_{j}(x, y_{1}, \cdots y_{n}), j=1, \cdots n)$ ,
$\vec{F}(\infty,\vec{0})=\vec{0}$ .

When $F_{j}$ are rational functions of $x,$ $y_{1},$
$\cdots$ , $y_{n}$ , then their results imply that the

equation (1.3) possesses a meromorphic solution $\vec{y}(x)$ which has an asymptotic
expansion

(1.4) $\vec{y}(x)\sim\sum_{m=1}^{\infty}\vec{a}_{m}/x^{m}$

in an angular domain. This is a very general result. But in the present case
(1.1), the solution (1.4) obtained by them has coefficients $\vec{a}_{m}=\vec{0},$ $m=1,2,$ $\cdots$

Therefore we need somewhat more detailed study of the equation to get non-
trivial solutions.
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