Real hypersurfaces of a complex hyperbolic space

By Sebastián MONTIEL

(Received Jan. 6, 1984) (Revised June 22, 1984)

1. Introduction.

During the last years the study of real hypersurfaces of Kaehlerian manifolds has been an important subject in geometry of submanifolds, especially when the ambient space is a complex space form.

One of the first results in this way (see [12]) was to state that any real hypersurface M of a complex space form $\overline{M}(c)$ with holomorphic sectional curvature $c \neq 0$ is not totally umbilical. This is a direct consequence of classical Codazzi's equation for such a hypersurface. From that equation, also one can deduce that there does not exist real hypersurfaces M of $\overline{M}(c)$, $c \neq 0$, with parallel second fundamental form H. So, it seems interesting to describe and characterize real hypersurfaces of $\overline{M}(c)$, $c \neq 0$, with a few principal curvatures or with derivative ∇H of the second fundamental form of short length. These problems have been solved, in the case c > 0, in [2], [6], [10], [11] and other works.

On the other hand, Kon, in [5], stated that there are no Einstein real hypersurfaces in $\overline{M}(c)$, c>0, and he studied a less restrictive condition for the Ricci tensor of these hypersurfaces: the pseudo-Einstein condition (see also [6]). In fact, he classified the pseudo-Einstein real hypersurfaces of the complex projective space using Takagi's works [10] and [11].

Finally, Cecil and Ryan generalized in [2] some results of [10] and [5]. They described in terms of tubes over complex submanifolds the real hypersurfaces of the complex projective space which appear in the literature.

Now we are interested in these problems when c < 0, that is, when $\overline{M}(c)$ is the complex hyperbolic space CH^m (for convenience we will assume c=-4). So, A. Romero and the author have classified in [7] all complete real hypersurfaces of CH^m which admit a S¹-principal bundle which is a parallel Lorentzian hypersurface of the anti-De Sitter space H_1^{2m+1} . These real hypersurfaces have the least length for ∇H as we will show in a forthcoming paper.

In this paper we construct some examples of real hypersurfaces of CH^m (Section 6) and we give a complete classification of the real hypersurfaces of CH^m with at most two principal curvatures at each point. In this classification we