J. Math. Soc. Japan Vol. 37, No. 3, 1985

On the spaces of self homotopy equivalences of certain CW complexes

Dedicated to Professor Nobuo Shimada on his 60th birthday

By Tsuneyo YAMANOSHITA

(Received June 8, 1984)

§0. Introduction.

Let X be a connected locally finite CW complex with non-degenerate base point and let G(X) and $G_0(X)$ be the spaces of self homotopy equivalences of X and self homotopy equivalences of X preserving the base point respectively.

It seems that little is known about the homotopy type of G(X) except in the following two cases. When X is an Eilenberg-MacLane complex $K(\pi, n)$, the weak homotopy type of G(X) is determined completely. That is, Thom noted that if π is an abelian group $G(K(\pi, n))$ has the same weak homotopy type as $\operatorname{Aut}(\pi) \times K(\pi, n)$, where $\operatorname{Aut}(\pi)$ denotes the group of automorphisms of π [7]. Gottlieb proved that $G(K(\pi, 1))$ has the same weak homotopy type as $\operatorname{Out}(\pi) \times K(Z(\pi), 1)$, where $\operatorname{Out}(\pi)$ denotes the group of automorphisms of π modulo the inner automorphisms and $Z(\pi)$ denotes the center of π [1]. When X is the *n*-sphere S^n $(n \ge 1)$, it is known that $\pi_i(G_0(S^n)) \cong \pi_{n+i}(S^n)$ $(i \ge 1)$.

In this paper, we shall show the following two theorems and their applications.

THEOREM A. Let X and Y be connected locally finite CW complexes with base points. For a given n>0, assume that $\pi_i(X)=0$ for every i>n and $\pi_i(Y)$ =0 for every $i\leq n$. Then we have

> $G(X \times Y) = G(X)^{Y} \times G(Y)^{X},$ $G_{0}(X \times Y) = (G(X), G_{0}(X))^{(Y, y_{0})} \times (G(Y), G_{0}(Y))^{(X, x_{0})},$

where $(Z, Z')^{(K, L)}$ denotes the space of maps of (K, L) into (Z, Z').

THEOREM B. Let X be a connected locally finite CW complex with base point whose dimension is not greater than n and let Y be an n-connected locally finite CW complex with base point. Then the same formulas as in Theorem A hold for $G(X \times Y)$ and $G_0(X \times Y)$.