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\S 0. Introduction.

Let $X$ be a connected locally finite CW complex with non-degenerate base
point and let $G(X)$ and $G_{0}(X)$ be the spaces of self homotopy equivalences of
$X$ and self homotopy equivalences of $X$ preserving the base point respectively.

It seems that little is known about the homotopy type of $G(X)$ except in the
following two cases. When $X$ is an Eilenberg-MacLane complex $K(\pi, n)$ , the
weak homotopy type of $G(X)$ is determined completely. That is, Thom noted
that if $\pi$ is an abelian group $G(K(\pi, n))$ has the same weak homotopy type as
$Aut(\pi)\cross K(\pi, n)$ , where $Aut(\pi)$ denotes the group of automorphisms of $\pi[7]$ .
Gottlieb proved that $G(K(\pi, 1))$ has the same weak homotopy type as Out $(\pi)\cross$

$K(Z(\pi), 1)$ , where Out $(\pi)$ denotes the group of automorphisms of $\pi$ modulo the
inner automorphisms and $Z(\pi)$ denotes the center of $\pi$ [1]. When $X$ is the
n-sphere $S^{n}(n\geqq 1)$ , it is known that $\pi_{i}(G_{0}(S^{n}))\cong\pi_{n+i}(S^{n})(i\geqq 1)$ .

In this paper, we shall show the following two theorems and their applica-
tions.

THEOREM A. Let $X$ and $Y$ be connected locally finite $CW$ complexes with
base points. For a given $n>0$ , assume that $\pi_{i}(X)=0$ for every $i>n$ and $\pi_{i}(Y)$

$=0$ for every $i\leqq n$ . Then we have

$G(X\cross Y)=G(X)^{Y}\cross G(Y)^{X}$ ,

$G_{0}(X\cross Y)=(G(X), G_{0}(X))^{(Y,y_{0})}\cross(G(Y), G_{0}(Y))^{(X}x_{0})$

where $(Z, Z’)^{(K,L)}$ denotes the space of maps of $(K, L)$ into $(Z, Z’)$ .

THEOREM B. Let $X$ be a connected locally finite $CW$ complex with base point
whose dimension is not greater than $n$ and let $Y$ be an n-connected locally finite
$CW$ complex with base pojnt. Then the same formulas as in Theorem $A$ hold for
$G(X\cross Y)$ and $G_{0}(X\cross Y)$ .


