J. Math. Soc. Japan Vol. 37, No. 3, 1985

Stiefel-Whitney homology classes and homotopy type of Euler spaces

By Akinori MATSUI and Hajime SATO

(Received May 28, 1984)

1. Introduction.

In this paper, we construct Euler spaces in fixed homotopy types such that the Stiefel-Whitney homology classes are equal to given homology elements. As a byproduct, we obtain counterexamples to Halperin's conjecture (Fulton-MacPherson [4]).

Let X be a locally compact n-dimensional polyhedron. For a point x in X, let $\chi(X, X-x)$ denote the Euler number of the pair (X, X-x). The polyhedron X is called an *integral Euler space* (resp. mod 2 *Euler space*) if for each x in X, $\chi(X, X-x)=(-1)^n$ (resp. $\chi(X, X-x)\equiv 1 \pmod{2}$) (Halperin and Toledo [6]). Sullivan [9] has shown that complex analytic spaces (resp. real analytic spaces) are integral Euler spaces (resp. mod 2 Euler spaces).

Let K' denote the barycentric subdivision of a triangulation K of a polyhedron X. If X is a mod2 Euler space, the sum of all k-simplexes in K' is a mod2 cycle and defines an element $s_k(X)$ in $H_k(X; \mathbb{Z}_2)$ (cf. [6]). Note that, if X is not compact, we consider the homology of infinite chains. The element $s_k(X)$ is called the *k*-th Stiefel-Whitney homology class of X. If X is connected and compact, $s_0(X)$ is the mod2 reduction of the Euler number $\chi(X)$, where we identify $H_0(X; \mathbb{Z}_2)$ with \mathbb{Z}_2 . If X is a smooth manifold, PL-manifold, or \mathbb{Z}_2 -homology manifold, the class $s_k(X)$ is known to be equal to the Poincaré dual of the Stiefel-Whitney cohomology class $w^{n-k}(X)$ (Cheeger [3], Halperin-Toledo [6], Taylor [10], Blanton-McCrory [2], Veljan [11], Matsui [8]). Consequently, for such spaces, the Stiefel-Whitney homology classes $s_*(X)$ are homotopy type invariant. For further properties of Stiefel-Whitney homology classes, see [1], [7].

A polyhedron X is called purely *n*-dimensional if the union of all *n*-simplexes in a triangulation of X is dense in X. We have the following concerning mod 2 Euler spaces:

THEOREM 1. Let X be a purely n-dimensional mod 2 Euler space and let a_i , for $i=1, 2, \dots, n-1$, be elements in $H_i(X; \mathbb{Z}_2)$. Then there exist a purely ndimensional mod 2 Euler space Y and a homotopy equivalence $h: X \to Y$ such that $h_*(a_i)=s_i(Y)$ for $i=1, 2, \dots, n-1$ and $h_*s_n(X)=s_n(Y)$.