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1. Introduction.

In this paper, we construct Euler spaces in fixed homotopy types such that
the Stiefel-Whitney homology classes are equal to given homology elements.
As a byproduct, we obtain counterexamples to Halperin’s conjecture (Fulton-

MacPherson [4]).

Let $X$ be a locally compact n-dimensional polyhedron. For a point $x$ in $X$,

let $\chi(X, X-x)$ denote the Euler number of the pair (X, $X-x$ ). The polyhedron
$X$ is called an integral Euler space (resp. mod 2 Euler space) if for each $x$ in $X$,
$\chi(X, X-x)=(-1)^{n}$ (resp. $\chi(X,$ $X-x)\equiv 1$ (mod2)) (Halperin and Toledo [6]).

Sullivan [9] has shown that complex analytic spaces (resp. real analytic spaces)

are integral Euler spaces (resp. mod2 Euler spaces).

Let $K’$ denote the barycentric subdivision of a triangulation $K$ of a polyhedron
X. If $X$ is a mod2 Euler space, the sum of all k-simplexes in $K’$ is a mod2
cycle and defines an element $s_{k}(X)$ in $H_{k}(X;Z_{2})$ (cf. [6]). Note that, if $X$ is
not compact, we consider the homology of infinite chains. The element $s_{k}(X)$

is called the k-th Stiefel-Whitney homology class of $X$. If $X$ is connected and
compact, $s_{0}(X)$ is the mod 2 reduction of the Euler number $\chi(X)$ , where we
identify $H_{0}(X;Z_{2})$ with $Z_{2}$ . If $X$ is a smooth manifold, PL-manifold, or $Z_{2^{-}}$

homology manifold, the class $s_{k}(X)$ is known to be equal to the Poincar\’e dual of
the Stiefel-Whitney cohomology class $w^{n-k}(X)$ (Cheeger [3], Halperin-Toledo [6],
Taylor [10], Blanton-McCrory [2], Veljan [11], Matsui [8]). Consequently, for
such spaces, the Stiefel-Whitney homology classes $s_{*}(X)$ are homotopy type in-
variant. For further properties of Stiefel-Whitney homology classes, see [1], [7].

A polyhedron $X$ is called purely n-dimensional if the union of all n-simplexes
in a triangulation of $X$ is dense in $X$. We have the following concerning mod2
Euler spaces:

THEOREM 1. Let $X$ be a purely n-dimensional mod2 Euler space and let $a_{i}$ ,

for $i=1,2,$ $\cdots$ $n-1$ , be elements in $H_{i}(X;Z_{2})$ . Then there exist a purely n-
dimenstonal mod2 Euler space $Y$ and a homotopy equivalence $h:Xarrow Y$ such that
$h_{*}(a_{i})=s_{i}(Y)$ for $i=1,2,$ $\cdots$ $n-1$ and $h_{*}s_{n}(X)=s_{n}(Y)$ .


