J. Math. Soc. Japan Vol. 37, No. 2, 1985

The automorphism group of Leech lattice and elliptic modular functions

Dedicated to Professor Hirosi Nagao on his 60th birthday

By Takeshi KONDO

(Received May 28, 1984)

Introduction.

As usual, we denote by $\cdot 0$ the automorphism group of Leech lattice which is an even unimodular lattice in 24-dimensional Euclidean space [1]. So $\cdot 0$ has a natural 24-dimensional representation ρ_0 over the rational number field. In this paper, Frame shapes of conjugacy classes of $\cdot 0$ with respect to ρ_0 , the list of which is given in Table I of Appendix, will play a central role. For the definition of Frame shape, see § 1.2.

Let \mathcal{F} be the set of all elliptic modular functions f(z) satisfying the following conditions:

(1) f(z) is a modular function with respect to a discrete subgroup Γ of $SL(2, \mathbf{R})$ containing $\Gamma_0(N)$ for some integer N (i.e. $f\left(\frac{az+b}{cz+d}\right)=f(z)$ for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and meromorphic on the upper half plane and at all cusps of Γ),

(2) the genus of Γ is zero and f(z) is a generator of a function field for Γ ,

(3) f(z) has a Fourier expansion of the form $f(z)=1/q+\sum_{n=0}^{\infty}a_nq^n$ $(q=e^{2\pi iz})$.

Now the main result of this paper is to show that various "transformations" (cf. §1.1) of Frame shapes of $\cdot 0$ yield functions of \mathcal{F} (Th. 3.2, 3.4, 3.5 and Table II~IV in Appendix). Furthermore, an application of this result is as follows: Let G be a finite group which has a d-dimensional representation ρ over the rational number field where d is a divisor of 24. For each of such many (not all) pairs (G, ρ) , we can construct a mapping from G to \mathcal{F}

$$G \ni \sigma \longmapsto j_{\sigma}(z) \in \mathcal{G}$$

such that all coefficients $a_k(\sigma)$ $(k \ge 1)$ of a Fourier expansion $j_{\sigma}(z) = 1/q + \sum_{k=0}^{\infty} a_k(\sigma)q^k$ are generalized characters of G (Th. 4.6, 4.8 and 4.10). Such a mapping is called a *moonshine* of G. A moonshine of Fischer-Griess's Monster is constructed in a remarkable paper of Conway-Norton [2] and other examples of moonshines can be found in Queen [10] and Koike [4]. Constructions of moon-