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Introduction.

As usual, we denote by $0$ the automorphism group of Leech lattice which
is an even unimodular lattice in 24-dimensional Euclidean space [1]. So $0$ has
a natural 24-dimensional representation $\rho_{0}$ over the rational number field. In
this paper, Frame shapes of conjugacy classes of $0$ with respect to $\rho_{0}$ , the list
of which is given in Table I of Appendix, will play a central role. For the
definition of Frame shape, see \S 1.2.

Let $\mathcal{F}$ be the set of all elliptic modular functions $f(z)$ satisfying the follow-
ing conditions:

(1) $f(z)$ is a modular function with respect to a discrete subgroup $\Gamma$ of

$SL(2, R)$ containing $\Gamma_{0}(N)$ for some integer $N(i.e$ . $f( \frac{az+b}{cz+d})=f(z)$ for any $(\begin{array}{ll}a bc d\end{array})$

$\in\Gamma$ and meromorphic on the upper half plane and at all cusps of $\Gamma$),
(2) the genus of $\Gamma$ is zero and $f(z)$ is a generator of a function field for $\Gamma$,
(3) $f(z)$ has a Fourier expansion of the form $f(z)=1/q+\Sigma_{n=0}^{\infty}a_{n}q^{n}(q=e^{2\pi iz})$ .
Now the main result of this paper is to show that various “transformations”

(cf. \S 1.1) of Frame shapes of $0$ yield functions of $\mathcal{F}$ (Th. 3.2, 3.4, 3.5 and Table
$II\sim IV$ in Appendix). Furthermore, an application of this result is as follows:
Let $G$ be a finite group which has a d-dimensional representation $\rho$ over the
rational number field where $d$ is a divisor of 24. For each of such many (not
all) pairs $(G, \rho)$ , we can construct a mapping from $G$ to $\mathcal{F}$

$G\ni\sigma-j_{\sigma}(z)\in \mathcal{F}$

such that all coefficients $a_{k}(\sigma)(k\geqq 1)$ of a Fourier expansion $j_{\sigma}(z)=1/q+\Sigma_{k=0}^{\infty}a_{k}(\sigma)q^{k}$

are generalized characters of $G$ (Th. 4.6, 4.8 and 4.10). Such a mapping
is called a moonshine of $G$ . A moonshine of Fischer-Griess’s Monster is con-
structed in a remarkable paper of Conway-Norton [2] and other examples of
moonshines can be found in Queen [10] and Koike [4]. Constructions of moon-


