On the value distribution of meromorphic mappings of covering spaces over C^m into algebraic varieties

Dedicated to Professor M. Ozawa on his 60th birthday

By Junjiro NOGUCHI

(Received May 21, 1984)

Introduction.

The purpose of this paper is to study the meromorphic mappings $f: X \rightarrow V$ of a finite analytic (ramified) covering space X over the *m*-dimensional complex vector space \mathbb{C}^m with projection $\pi: X \rightarrow \mathbb{C}^m$ into a complex projective manifold V of dimension n from the view point of the Nevanlinna theory; especially, we are interested in inequalities of the second main theorem type. In the case where m=1 and V is the 1-dimensional complex projective space $\mathbb{P}^1(\mathbb{C})$, Selberg [17] proved the first and the second main theorems for $f: X \rightarrow \mathbb{P}^1(\mathbb{C})$. In the case where $\dim X \ge \dim V = \operatorname{rank} f(=\sup \{\dim X - \dim_x f^{-1}(f(x)); x \in X\}) \ge 1$, we proved the second main theorem and defect relations for f and divisors on V, generalizing the above results of Selberg and the Carlson-Griffiths-King theory [2] and [5] (see [10], [11] and [19]).

Here we deal with the case where rank f does not necessarily equal dim V. Stoll [20] obtained the Ahlfors-Weyl theory for linearly non-degenerate meromorphic mappings from a parabolic manifold into $P^n(C)$ which applies to the case of $f: X \rightarrow P^n(C)$ (see [20, Theorem 11.8]). When X is an affine algebraic curve (or the domain of f may be the punctured disc Δ^* in C), we proved an inequality of the second main theorem type for $f: X \rightarrow V$ in terms of logarithmic 1-forms along the given divisors on V (see [12], [13] and [14]), and applied it to obtain a generalization of big Picard's theorem (see [14]). In the present paper we extend this inequality to the case where X is a finite analytic covering space over C^m , and give an application.

Let D be an effective reduced divisor on V such that the closed image of the quasi-Albanese mapping $\alpha: V - D \rightarrow A_{V-D}$ is of dimension n and of general type (cf. [6] and [7]). Here we identify D with its support. Let $f: X \rightarrow V$ be a meromorphic mapping. We say that f is degenerate with respect to the complete linear system |L| of a holomorphic line bundle L over V if $f(X) \subset \text{Supp}E$ for some $E \in |L|$, where SuppE denotes the support of the divisor E; otherwise, f is said to be non-degenerate with respect to |L|. Assume that $f(X) \not\subset D$ and