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Introduction.

The purpose of this paper is to study the meromorphic mappings $f$ : $Xarrow V$

of a finite analytic (ramified) covering space $X$ over the m-dimensional complex
vector space $C^{m}$ with projection $\pi$ : $Xarrow C^{m}$ into a compIex projective manifold
$V$ of dimension $n$ from the view point of the Nevanlinna theory; especially, we
are interested in inequalities of the second main theorem type. In the case
where $m=1$ and $V$ is the l-dimensional complex projective space $P^{1}(C)$ , Selberg
[17] proved the first and the second main theorems for $f:Xarrow P^{1}(C)$ . In the
case where $\dim X\geqq\dim V=rankf(=\sup\{\dim X-\dim_{x}f^{-1}(f(x));x\in X\})\geqq 1$ , we
proved the second main theorem and defect relations for $f$ and divisors on $V$ ,
generalizing the above results of Selberg and the Carlson-Griffiths-King theory
[2] and [5] (see [10], [11] and [19]).

Here we deal with the case where rank $f$ does not necessarily equal $\dim V$ .
Stoll [20] obtained the Ahlfors-Weyl theory for linearly non-degenerate mero-
morphic mappings from a parabolic manifold into $P^{n}(C)$ which applies to the
case of $f$ : $Xarrow P^{n}(C)$ (see [20, Theorem 11.8]). When $X$ is an affine algebraic
curve (or the domain of $f$ may be the punctured disc $\Delta^{*}$ in $C$ ), we proved an
inequality of the second main theorem type for $f$ : $Xarrow V$ in terms of logarithmic
l-forms along the given divisors on $V$ (see [12], [13] and [14]), and applied it
to obtain a generalization of big Picard’s theorem (see [14]). In the present
paper we extend this inequality to the case where $X$ is a finite analytic cover-
ing space over $C^{m}$ , and give an application.

Let $D$ be an effective reduced divisor on $V$ such that the closed image of
the quasi-Albanese mapping $\alpha:V-Darrow A_{V-D}$ is of dimension $n$ and of general
type (cf. [6] and [7]). Here we identify $D$ with its support. Let $f:Xarrow V$ be
a meromorphic mapping. We say that $f$ is degenerate with respect to the com-
plete linear system $|L|$ of a holomorphic line bundle $L$ over $V$ if $f(X)\subset SuppE$

for some $E\in|L|$ , where SuppE denotes the support of the divisor $E$ ; otherwise,
$f$ is said to be non-degenerate with respect to $|L|$ . Assume that $f(X)\not\subset D$ and


