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\S $0$ . Introduction.

In [5] H. P. McKean considered systems of many particles obeying stochastic
differential equations:

(0.1) $dX_{i}^{n}= \frac{1}{n-1}\sum_{j\neq i}^{n}e(X_{i}^{n}, X_{j}^{n})dB_{i}+\frac{1}{n-1}\sum_{j\neq i}^{n}f(X_{i}^{n}, X_{j}^{n})dt$ $(i=1,2, \cdots , n)$ .

Under the conditions of smoothness and boundedness of the coefficients, he
proved that if the initial values $X_{i}^{n}(0)$ are $i.i.d$ . random variables then any fixed
finite particles converge to independent copies of a one-dimensional diffusion
process determined by an equation

(0.2) $dX(t)=e[X(t), p_{t}]dB(t)+f[X(t), p_{t}]dr$ ,

where $e[x, \mu]=\int_{R}e(x, y)\mu(dy)$ and $p_{t}$ is a distribution of $X(t)$ . A point of the

proof is in studying the processes $\{X_{i}^{n}(t)\}$ in the infinite product probability
space $\Pi_{i=1}^{\infty}\{\mu_{i}, P_{i}\}$ of identically and independently distributed initial distribution
and Brownian motions, and applying Hewitt-Savage’s 0-1 law to these diffusion
processes on this probability space. There is another approach to this problem
employed by H. Tanaka and A. S. Sznitman [9], [8]. They discussed probability
measure-valued processes $(1/n) \sum_{i=1}^{n}\delta_{x_{i}^{n}(t)}$ from the point of view of a martingale
problem. In these arguments the smoothness of the coefficients $e,$ $f$ is crucial.
However an interesting case of $e(x)=1$ and $f(x)=(\lambda/2)\delta(x)$ is excluded. In this
case the expected limit process satisfies

(0.3) $dZ(t)=dB(t)+ \frac{\lambda}{2}p_{t}(Z(t))dt$ ,

and $p_{t}(x)$ is a solution of the Burgers equation

(0.4) $\frac{\partial}{\partial t}p=\frac{1}{2}\nabla^{2}p-\frac{\lambda}{2}\nabla p^{2}$ $( \nabla=\frac{\partial}{\partial_{X}})$ .

(0.4) is uniquely solvable for any initial distribution in the following way:

$p_{t}(x)=- \frac{1}{\lambda}\cdot\frac{\partial}{\partial_{X}}\{\log\int_{R}g_{t}(x-y)e^{-\lambda J_{-\infty}^{y}\nu(dz)}dy\}$ , $g_{t}(x)= \frac{1}{(2\pi t)^{1/2}}e^{-x^{2}/2}$ .


