Steepest descent and differential equations

In memory of my teacher, H.S. Wall

By J. W. NEUBERGER

(Received Jan. 31, 1984)

1. Introduction.

This note is a report on some phenomena suggested by numerical solution of boundary value problems. Two conditions are given. If both hold for a given problem then continuous constrained steepest descent converges to a solution.

Suppose that each of H, K and S is a real Hilbert space, $F: H \rightarrow K$, $B: H \rightarrow S$ and each of F and B has a locally Lipschitz derivative.

Consider the problem of *constructively* identifying $u \in H$ such that

(1)
$$F(u)=0, \quad B(u)=0.$$

Many boundary value problems in differential equations — ordinary, partial, functional — can be cast as such problems where F(u)=0 represents a differential equation and B(u)=0 represents boundary conditions.

Denote by P the function on H so that if $x \in H$ then P(x) is the orthogonal projection of H onto N(B'(x)), the nullspace of B'(x). It is assumed throughout that P is locally Lipschitz.

Define ϕ on H so that if $x \in H$ then

$$\phi(x) = \|F(x)\|^2/2, \qquad x \in H$$

and denote by $\nabla_B \phi$ the function defined on H so that

$$(\nabla_B \phi)(x) = P(x)(\nabla \phi)(x), \qquad x \in H$$

where $\nabla \phi$ is the gradient function for ϕ . $\nabla_B \phi$ is called the *B*-gradient of ϕ . The following is intended to justify this terminology:

LEMMA 1. Suppose $x \in H$ and α_x is the function with domain N(B'(x)) so that

$$\alpha_x(k) = \phi(x+k), \qquad k \in N(B'(x)).$$

Then $(\nabla_B \phi)(x) = (\nabla \alpha_x)(0)$.

LEMMA 2. If $x \in H$ there is a unique function z from $[0, \infty)$ to H so that

(2)
$$z(0) = x$$
, $z'(t) = -(\nabla_B \phi)(z(t))$, $t \ge 0$.