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1. Introduction.

This note is a report on some phenomena suggested by numerical solution of
boundary value problems. Two conditions are given. If both hold for a given
problem then continuous constrained steepest descent converges to a solution.

Suppose that each of $H,$ $K$ and $S$ is a real Hilbert space, $F:Harrow K,$ $B:Harrow S$

and each of $F$ and $B$ has a locally Lipschitz derivative.
Consider the problem of constructively identifying $u\in H$ such that

(1) $F(u)=0$ , $B(u)=0$ .
Many boundary value problems in differential equations–ordinary, partial, func-
tional–can be cast as such problems where $F(u)=0$ represents a differential
equation and $B(u)=0$ represents boundary conditions.

Denote by $P$ the function on $H$ so that if $x\in H$ then $P(x)$ is the orthogonal
projection of $H$ onto $N(B’(x))$ , the nullspace of $B’(x)$ . It is assumed throughout
that $P$ is locally Lipschitz.

Define $\phi$ on $H$ so that if $x\in H$ then

$\phi(x)=\Vert F(x)\Vert^{2}/2$ , $x\in H$

and denote by $\nabla_{B}\phi$ the function defined on $H$ so that

$(\nabla_{B}\phi)(x)=P(x)(\nabla\phi)(x)$ , $x\in H$

where $\nabla\phi$ is the gradient function for $\phi$ . $\nabla_{B}\phi$ is called the B-gradient of $\phi$ .
The following is intended to justify this terminology:

LEMMA 1. Suppose $x\in H$ and $\alpha_{x}$ is the function with domain $N(B’(x))$ so that

$\alpha_{x}(k)=\phi(x+k)$ , $k\in N(B’(x))$ .
Then $(\nabla_{B}\phi)(x)=(\nabla\alpha_{x})(0)$ .

LEMMA 2. If $x\in H$ there is a unique function $z$ from $[0, \infty$ ) to $H$ so that

(2) $z(0)=x$ , $z’(t)=-(\nabla_{B}\phi)(z(t))$ , $t\geqq 0$ .


