Strong topological transitivity and C^* -dynamical systems

By Ola BRATTELI, George A. ELLIOTT and Derek W. ROBINSON

(Received Feb. 13, 1984)

0. Introduction.

Let T denote the action of a group H as homeomorphisms of a topological space X; then (X, H, T) is said to be topologically transitive if for each pair of non-empty open sets A, $B \subseteq X$ there exists an $h \in H$ such that $A \cap T_h(B) \neq \emptyset$ (see, for example, [13] Chapter 5). Following [10], we define the C*-dynamical system (\mathcal{A}, H, τ) to be topologically transitive if for each pair of non-zero elements $x, y \in \mathcal{A}$ there exists an $h \in H$ such that $x\tau_h(y)\neq 0$.

The algebraic definition is particularly natural if \mathcal{A} is abelian. In this case τ determines an action τ' of H as homeomorphisms of the spectrum X of \mathcal{A} such that $(\tau_h x)(\omega) = x(\tau'_{h-1}\omega)$, for $x \in \mathcal{A}$ and $\omega \in X$, and (\mathcal{A}, H, τ) is topologically transitive if and only if (X, H, τ') is topologically transitive.

In [10] the definition is given in a slightly different form. These authors require that the product $\mathcal{A}_1\mathcal{A}_2$ of each pair of non-zero τ -invariant hereditary C^* -subalgebras \mathcal{A}_1 , $\mathcal{A}_2 \subseteq \mathcal{A}$ is non-zero. This obviously follows from our definition but conversely if there exist non-zero $x, y \in \mathcal{A}$ such that $x\tau_h(y)=0$ for all $h \in H$ then the product $\mathcal{A}_1\mathcal{A}_2$ of the τ -invariant hereditary C^* -subalgebras \mathcal{A}_1 and \mathcal{A}_2 generated by $\{\tau_h(x)^*\mathcal{A}\tau_h(x); h \in H\}$ and $\{\tau_h(y)\mathcal{A}\tau_h(y)^*; h \in H\}$ must be zero.

Although the foregoing definition of transitivity is quite natural there is a seemingly stronger notion which appears to be more useful. The C*-dynamical system (\mathcal{A}, H, τ) is defined to be strongly topologically transitive if for each finite sequence $\{(x_i, y_i); i=1, 2, \dots, n\}$ of pairs of elements $x_i, y_i \in \mathcal{A}$ for which

$$\sum_{i=1}^n x_i \otimes y_i \neq 0 ,$$

in the algebraic tensor product $\mathcal{A} \otimes \mathcal{A}$, there exists an $h \in H$ such that

$$\sum_{i=1}^n x_i \tau_h(y_i) \neq 0$$

in \mathcal{A}_{\bullet}

Clearly strong topological transitivity implies topological transitivity; it suffices to apply the strong condition to a single pair (x, y). In Section 1 we show that the two properties are equivalent if \mathcal{A} is abelian or finite-dimensional. We also