Projective plane curves and the automorphism groups of their complements

By Hisao Yoshithara

(Received Jan. 14, 1984)

1. Introduction.

Let C be an irreducible algebraic curve of degree d on $\boldsymbol{P}^{2}=\boldsymbol{P}^{2}(\boldsymbol{C})$ and put $V=\boldsymbol{P}^{2 \backslash} \backslash C$. Let \mathcal{G} be the automorphism group of the algebraic surface V and \mathcal{L} the linear part of \mathcal{G}, i. e., $\mathcal{L}=\left\{T \in \operatorname{Aut}\left(\boldsymbol{P}^{2}\right) \mid T(C)=C\right\}$. If $d=1$, then \mathcal{G} is generated by linear transformations and de Jonquières transformations of V (Nagata [5]); if $d=2$, then generators of the similar kind have been found by Gizatullin and Danilov [2]. In this paper we shall study the structure of \mathcal{G} and at the same time the property of C in the case when $d \geqq 3$.

We shall use the following notations in addition to the above ones. Let (X, Y, Z) be a set of homogeneous coordinates on P^{2} and put $x=X / Z$ and $y=Y / Z$. Usually we do not treat the line $Z=0$, so we say that for an irreducible polynomial f, the curve $Z^{d} f(X / Z, Y / Z)=0$ is defined by f, where $d=$ $\operatorname{deg} f$. Especially we denote by Δ [resp. Δ_{e}] the curve defined by $x y-x^{3}-y^{3}$ [resp. $y^{e}-x^{d}$, where $(e, d)=1$ and $1 \leqq e \leqq d-2$]. Let M be the number of the singular points $\left\{P_{1}, \cdots, P_{M}\right\}$ of C and $\mu: \widetilde{C} \rightarrow C$ the normalization of C. Then let N denote the number of elements of $\mu^{-1}\left(\left\{P_{1}, \cdots, P_{M}\right\}\right)$ and g the genus of \tilde{C}. In case $N=1$, let $\left(e_{1}, \cdots, e_{p}\right)$ be the sequence of the multiplicities of all successive infinitely near singular points of P_{1}, and put

$$
R=d^{2}-\sum_{i=1}^{p} e_{i}^{2}-e_{p}+1
$$

Let \boldsymbol{G}_{a} and \boldsymbol{G}_{m} be the additive and the multiplicative groups respectively.
First we shall prove the following with the help of the Plücker relations.
Proposition 1. Suppose that $d \geqq 3$. Then the following three conditions are equivalent.
(1) The order of \mathcal{L} is infinite.
(2) The linear part \mathcal{L} is isomorphic to \boldsymbol{G}_{m}.
(3) The curve C is projectively equivalent to Δ_{e}.

