Projective plane curves and the automorphism groups of their complements

By Hisao YOSHIHARA

(Received Jan. 14, 1984)

1. Introduction.

Let C be an irreducible algebraic curve of degree d on $P^2 = P^2(C)$ and put $V = P^2 \setminus C$. Let \mathcal{Q} be the automorphism group of the algebraic surface V and \mathcal{L} the linear part of \mathcal{Q} , i.e., $\mathcal{L} = \{T \in \operatorname{Aut}(P^2) \mid T(C) = C\}$. If d = 1, then \mathcal{Q} is generated by linear transformations and de Jonquières transformations of V (Nagata [5]); if d = 2, then generators of the similar kind have been found by Gizatullin and Danilov [2]. In this paper we shall study the structure of \mathcal{Q} and at the same time the property of C in the case when $d \geq 3$.

We shall use the following notations in addition to the above ones. Let (X, Y, Z) be a set of homogeneous coordinates on P^2 and put x=X/Z and y=Y/Z. Usually we do not treat the line Z=0, so we say that for an irreducible polynomial f, the curve $Z^d f(X/Z, Y/Z)=0$ is defined by f, where d= deg f. Especially we denote by Δ [resp. Δ_e] the curve defined by $xy-x^3-y^3$ [resp. y^e-x^d , where (e, d)=1 and $1\leq e\leq d-2$]. Let M be the number of the singular points $\{P_1, \dots, P_M\}$ of C and $\mu: \widetilde{C} \rightarrow C$ the normalization of C. Then let N denote the number of elements of $\mu^{-1}(\{P_1, \dots, P_M\})$ and g the genus of \widetilde{C} . In case N=1, let (e_1, \dots, e_p) be the sequence of the multiplicities of all successive infinitely near singular points of P_1 , and put

$$R = d^2 - \sum_{i=1}^p e_i^2 - e_p + 1$$
.

Let G_a and G_m be the additive and the multiplicative groups respectively.

First we shall prove the following with the help of the Plücker relations.

PROPOSITION 1. Suppose that $d \ge 3$. Then the following three conditions are equivalent.

- (1) The order of \mathcal{L} is infinite.
- (2) The linear part \mathcal{L} is isomorphic to G_m .
- (3) The curve C is projectively equivalent to Δ_e .

This research was partially supported by Grant-in-Aid for Scientific Research (No. 470260114807), Ministry of Education.