The first eigenvalue of Laplacians on minimal surfaces in $\boldsymbol{S}^{\mathbf{3}}$

Dedicated to Professor Naomi Mitsutsuka on his 60th birthday

By Hiroshi MORI
(Received Dec. 26, 1983)

1. Introduction.

There are many complete surfaces with constant mean curvature in the Euclidean 3 -space \boldsymbol{R}^{3} and in the hyperbolic 3 -space \boldsymbol{H}^{3} (see [2], [4]). But in the Euclidean 3 -sphere \boldsymbol{S}^{3} there have been few results on such surfaces except umbilic ones and flat tori (cf. [5]).

In this paper, we shall construct a one-parameter family of complete, rotational surfaces in \boldsymbol{S}^{3} with constant mean curvature, including a flat torus as an initial one. In particular, there is a one-parameter family of complete, rotational, minimal surfaces in S^{3}, including the Clifford torus. And we shall show that none of closed, rotational, minimal surfaces in S^{3} is embedded and the first eigenvalues of some ones relative to the Laplacian are smaller than two except for the Clifford torus.

2. Preliminaries.

In this section, we shall review rotational surfaces in \boldsymbol{S}^{3}. At first, we note that S^{3} is realized as a hypersurface of the Euclidean 4 -space \boldsymbol{R}^{4} :

$$
S^{3}=\left\{\left(x_{1}, \cdots, x_{4}\right) \in R^{4} ; \sum_{j} x_{j}^{2}=1\right\} .
$$

In what follows, we denote by $\boldsymbol{S}^{2}(c)$ the Euclidean 2 -sphere of constant Gaussian curvature c (or equivalently, the 2 -sphere in R^{3} of radius $1 / \sqrt{c}$), and by $\boldsymbol{S}^{1}(r)$ the circle in \boldsymbol{R}^{2} of radius r. And we put $\boldsymbol{S}^{1}=\boldsymbol{S}^{1}(1)$ and $\boldsymbol{R}=\boldsymbol{S}^{1}(\infty)$ for convenience's sake. We note that $\boldsymbol{S}^{1}(r) \equiv \boldsymbol{R} / 2 \pi r \boldsymbol{Z}$ for a positive number r, where \boldsymbol{Z} is the set of all integers.

Up to an isometry of $\boldsymbol{S}^{\mathbf{3}}$, an umbilic surface and a flat torus in $\boldsymbol{S}^{\mathbf{3}}$ are represented as follows. For each real number H, the isometric embedding $f: \boldsymbol{S}^{2}\left(H^{2}+1\right) \rightarrow \boldsymbol{S}^{3}, f(x, y, z)=\left(x, y, z, H / \sqrt{\left(H^{2}+1\right)}\right)$ of $\boldsymbol{S}^{2}\left(H^{2}+1\right)$ into \boldsymbol{S}^{3} defines an umbilic surface $\boldsymbol{M}^{2}(H)$ in \boldsymbol{S}^{3} with constant mean curvature H, and for $a=$ $\sqrt{\left[\left\{1-H / \sqrt{\left(H^{2}+1\right)}\right\} / 2\right]}$ and $b=\sqrt{\left(1-a^{2}\right)}$, the isometric embedding $f: \boldsymbol{S}^{1}(a) \times \boldsymbol{S}^{1}(b)$ $\rightarrow \boldsymbol{S}^{\mathbf{3}}, f((x, y),(u, v))=(x, y, u, v)$ of $\boldsymbol{S}^{1}(a) \times \boldsymbol{S}^{1}(b)$ into \boldsymbol{S}^{3} defines a flat torus

