J. Math. Soc. Japan Vol. 37, No. 1, 1985

The first eigenvalue of Laplacians on minimal surfaces in S^3

Dedicated to Professor Naomi Mitsutsuka on his 60th birthday

By Hiroshi MORI

(Received Dec. 26, 1983)

1. Introduction.

There are many complete surfaces with constant mean curvature in the Euclidean 3-space \mathbb{R}^3 and in the hyperbolic 3-space \mathbb{H}^3 (see [2], [4]). But in the Euclidean 3-sphere \mathbb{S}^3 there have been few results on such surfaces except umbilic ones and flat tori (cf. [5]).

In this paper, we shall construct a one-parameter family of complete, rotational surfaces in S^3 with constant mean curvature, including a flat torus as an initial one. In particular, there is a one-parameter family of complete, rotational, minimal surfaces in S^3 , including the Clifford torus. And we shall show that none of closed, rotational, minimal surfaces in S^3 is embedded and the first eigenvalues of some ones relative to the Laplacian are smaller than *two* except for the Clifford torus.

2. Preliminaries.

In this section, we shall review rotational surfaces in S^3 . At first, we note that S^3 is realized as a hypersurface of the Euclidean 4-space R^4 :

$$S^{3} = \{(x_{1}, \cdots, x_{4}) \in \mathbb{R}^{4}; \sum_{A} x_{j}^{2} = 1\}.$$

In what follows, we denote by $S^2(c)$ the Euclidean 2-sphere of constant Gaussian curvature c (or equivalently, the 2-sphere in \mathbb{R}^3 of radius $1/\sqrt{c}$), and by $S^1(r)$ the circle in \mathbb{R}^2 of radius r. And we put $S^1 = S^1(1)$ and $\mathbb{R} = S^1(\infty)$ for convenience's sake. We note that $S^1(r) \equiv \mathbb{R}/2\pi r \mathbb{Z}$ for a positive number r, where \mathbb{Z} is the set of all integers.

Up to an isometry of S^3 , an umbilic surface and a flat torus in S^3 are represented as follows. For each real number H, the isometric embedding $f: S^2(H^2+1) \rightarrow S^3$, $f(x, y, z) = (x, y, z, H/\sqrt{(H^2+1)})$ of $S^2(H^2+1)$ into S^3 defines an umbilic surface $M^2(H)$ in S^3 with constant mean curvature H, and for $a = \sqrt{[\{1-H/\sqrt{(H^2+1)}\}/2]}$ and $b = \sqrt{(1-a^2)}$, the isometric embedding $f: S^1(a) \times S^1(b)$ $\rightarrow S^3$, f((x, y), (u, v)) = (x, y, u, v) of $S^1(a) \times S^1(b)$ into S^3 defines a flat torus