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\S 0. Introduction.

The annulus theorem, which is significant in 3-manifold topology, was first
announced by Waldhausen [15] and proved by Cannon-Feustel [1]. It is stated
as follows:

Let $M$ be a compact orientable P. L. manifold with boundary and let $A$ be
a P. L. annulus. Suppose $f$ : $(A, \partial A)arrow(M, \partial M)$ is an essential P. L. map. Then
there exists an essential P. L. embedding $f^{*}:$ $(A, \partial A)arrow(M, \partial M)$ .

In this paper we prove the above annulus theorem in the smooth category,
realizing it by area-minimizing minimal surfaces on a Riemannian manifold.

To this end we take an arbitrary compact Riemannian manifold $M$ of dimen-
sion $m$ with convex boundary $(m\geqq 3)$ and solve in \S 3 the energy minimizing
problem for essential ($i.e$ . incompressible and boundary incompressible) maps
from $(\Delta, \partial\Delta)$ into $(M, \partial M)$ , where $\Delta$ is a k-ply connected compact planar domain
$(2\leqq k<\infty)$ . Our variational problem is, as found from this setting, what is called
a free boundary problem. Since the convergence in free boundary cases is
attended with some troubles, we solve an appropriate fixed boundary problem in
\S 2 to make sure of some converging sequence whose limit is the required solution.

Next in \S 4 we suppose $m=3$ and show that the above minimally immersed
solution surface is an embedding or a double covering map of an embedded
Mobius strip in case $k=2$ . We find difficulties in fulfilling this, since the tower
construction does not preserve the boundary incompressibility. We get over this
obstacle by utilizing, with the characters of an annulus, a certain covering which
is adequate for this situation. A simple example (Example 1) shows that the
solution surfaces, in case $k\geqq 3$ , are neither embeddings nor double covering maps
of embedded surfaces in general. Our main result or the geometric annulus
theorem is achieved in \S 5:

THEOREM (Geometric Annulus Theorem). Let $M$ be a compact orientable
Riemannian 3-manifold with convex incompressjble boundary and let $A$ be a smooth
annulus. Suppose that there is an essential smooth map $f:(A, \partial A)arrow(M, \partial M)$ .
Then:


