The normality of Σ -products and the perfect *k*-normality of Cartesian products

By Yukinobu YAJIMA

(Received March 3, 1983) (Revised Nov. 29, 1983)

§0. Introduction.

Corson [3] introduced the concept of Σ -products, which are quite important subspaces of Cartesian products of topological spaces. He studied there the normality of Σ -products. On the other hand, Blair [2], Ščepin [16] and Terada [19] independently introduced the concept of perfect κ -normality (or Oz) which is analogous to that of normality. The former two studied there when Cartesian products of topological spaces are perfectly κ -normal. In these connections, the following two results (I) and (II) seem to be most remarkable:

(I) A Σ -product of metric spaces is (collectionwise) normal.

(II) A Cartesian product of metric spaces is perfectly κ -normal.

The former was proved by Gul'ko [4] and Rudin [9]. The latter was given by Ščepin [16]. Subsequently, Kombarov [8] obtained a nice extension of (I) as follows:

(III) For a Σ -product Σ of paracompact *p*-spaces, (a) Σ is normal, (b) Σ is collectionwise normal and (c) Σ has countable tightness are equivalent.

As another generalized metric spaces, Okuyama [13] introduced the concept of σ -spaces. Subsequently, Nagami [11] introduced the class of Σ -spaces which contains both ones of σ -spaces and paracompact *p*-spaces. These generalized metric spaces play important roles in this paper.

Recently, the author [21] has proved that for a Σ -product Σ of paracompact Σ -spaces the implication (c) \Rightarrow (b) in (III) is true. The first purpose of this paper is to prove that for such a Σ -product Σ the implication (a) \Leftrightarrow (b) is true. We also discuss the countable paracompactness of Σ -products. The second purpose of this paper is to obtain an extension of (II) for a Cartesian product of paracompact σ -spaces, the form of which is resemble to that of (c) \Rightarrow (a) in (III). In process of proving this result, we consider the union of \aleph_0 -cubes in a Cartesian product of σ -spaces. This is closely related to a certain question of R. Pol and E. Pol [14] though it has been already solved by Klebanov [5].

All spaces considered here are assumed to be Hausdorff. The letters n, i, j,