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\S 1. Introduction and notation.

In this paper we study involutive automorphisms of reduced root systems
using the following notations and definitions (patterned after those in [3], [5]).

Let $\Delta$ be a reduced root system spanning a finite-dimensional Euclidean space
$E$ with Weyl group invariant inner product $(\cdot|\cdot)$ . Let $\Pi$ be a fundamental
system of $\Delta$ . We endow the space $E$ with a partial ordering $\geqq$ with respect to
$\Pi$ : for $\alpha,$ $\beta$ in $E\alpha\geqq\beta$ if $\alpha-\beta$ is a linear combination of roots in $\Pi$ with
integral non-negative coefficients. Since the Weyl group $W$ of $\Delta$ acts simply
transitively on the set of fundamental systems of $\Delta$, there exists a unique element
$w_{\Pi}$ in $W$ such that $w_{\Pi}(\Pi)=-\Pi$ . The automorphism $op\Pi$ defined by $op_{\Pi}$ $:=-w_{\Pi}$

is called the opposition involution of $\Delta$ with respect to $\Pi$ .
Now let $\sigma$ be an involutive automorphism of $\Delta$ ; denote its linearization to a

transformation of $E$ by $\sigma$ too. We renorm the space $E$ in such a way that $\sigma$

extends to a congruence of $E$ . We can decompose $E$ into a direct sum of
subspaces $E_{0}$ $:=\{\alpha\in E|\sigma\alpha=-\alpha\}$ and $\overline{E}:=\{\alpha\in E|\sigma\alpha=\alpha\}$ . Let $-$ : $E\ni\alpha-\overline{\alpha}\in\overline{E}$

be the canonical projection of $E$ onto $\overline{E}$ with respect to $E_{0}$ . We define $\Delta_{0}$ $:=$

$\Delta\cap E_{0},$ $\Pi_{0}$ $;=\Pi\cap\Delta_{0},\overline{\Delta}:=\{\overline{\alpha}|\alpha\in\Delta\backslash \Delta_{0}\}$ and $\overline{\Pi};=\{\overline{\rho}|\rho\in\Pi\backslash \Pi_{0}\}$ ; $\overline{\Delta}$ is called the
system of restricted roots. The set $\tilde{\Delta}:=\{\psi\in\overline{\Delta}|\psi$ is not of the form $c\eta$ with
$\eta\in\overline{\Delta},$ $c\in R,$ $c>1$} is the system of reduced restricted roots. In general neither
a nor $\tilde{\Delta}$ is a root system.

We call $\Pi\sigma$-fundamental if $\sigma\rho>0$ for each root $\rho$ in $\Pi\backslash \Pi_{0}$ . Throughout
this paper we will assume $\Pi$ to be a $\sigma$ -fundamental system of $\Delta$ and call the
corresponding partial ordering of $E$ a $\sigma$-ordering. In \S 2 we state some basic
properties of $\sigma$-fundamental systems and we will also give a diagrammatic
description of the action of the involutive automorphism $\sigma$ on $\Delta$ by introduction
of a so-called Satake diagram of $\sigma$ with respect to a a-fundamental system $\Pi$ .

We define $W_{\sigma}$ $:=\{w\in W|w\circ\sigma=\sigma\circ w\},\overline{w}:=the$ restriction of an element $w$ in
$W_{\sigma}$ to $\overline{E}$ and $\overline{W}:=\{\overline{w}|w\in W_{\sigma}\}$ . Schattschneider [6] studied the action of a
general automorphism group $G$ on the root system of a semisimple algebraic
group and determined under which conditions $\tilde{\Delta}$ is a root system with Weyl
group $\overline{W}$. In \S 3 we will give easier proofs of these results in our less general
context of $G=\{1, \sigma\}$ . In \S 4 we show that the propertv of $\tilde{\Delta}$ being a root


