Involutive automorphisms of root systems

By André HECK

(Received Nov. 5, 1983)

§1. Introduction and notation.

In this paper we study involutive automorphisms of reduced root systems using the following notations and definitions (patterned after those in [3], [5]).

Let Δ be a reduced root system spanning a finite-dimensional Euclidean space E with Weyl group invariant inner product $(\cdot | \cdot)$. Let Π be a fundamental system of Δ . We endow the space E with a partial ordering \geq with respect to Π : for α , β in $E \alpha \geq \beta$ if $\alpha - \beta$ is a linear combination of roots in Π with integral non-negative coefficients. Since the Weyl group W of Δ acts simply transitively on the set of fundamental systems of Δ , there exists a unique element w_{Π} in W such that $w_{\Pi}(\Pi) = -\Pi$. The automorphism op_{\Pi} defined by op_{\Pi} := -w_{\Pi} is called the *opposition involution* of Δ with respect to Π .

Now let σ be an involutive automorphism of Δ ; denote its linearization to a transformation of E by σ too. We renorm the space E in such a way that σ extends to a congruence of E. We can decompose E into a direct sum of subspaces $E_0 := \{\alpha \in E \mid \sigma \alpha = -\alpha\}$ and $\overline{E} := \{\alpha \in E \mid \sigma \alpha = \alpha\}$. Let $\overline{}: E \ni \alpha \mapsto \overline{\alpha} \in \overline{E}$ be the canonical projection of E onto \overline{E} with respect to E_0 . We define $\Delta_0 := \Delta \cap E_0$, $\Pi_0 := \Pi \cap \Delta_0$, $\overline{\Delta} := \{\overline{\alpha} \mid \alpha \in \Delta \setminus \Delta_0\}$ and $\overline{\Pi} := \{\overline{\rho} \mid \rho \in \Pi \setminus \Pi_0\}$; $\overline{\Delta}$ is called the system of restricted roots. The set $\overline{\Delta} := \{\psi \in \overline{\Delta} \mid \psi$ is not of the form $c\eta$ with $\eta \in \overline{\Delta}, c \in \mathbb{R}, c > 1\}$ is the system of reduced restricted roots. In general neither $\overline{\Delta}$ nor $\overline{\Delta}$ is a root system.

We call Π σ -fundamental if $\sigma \rho > 0$ for each root ρ in $\Pi \setminus \Pi_0$. Throughout this paper we will assume Π to be a σ -fundamental system of \varDelta and call the corresponding partial ordering of E a σ -ordering. In §2 we state some basic properties of σ -fundamental systems and we will also give a diagrammatic description of the action of the involutive automorphism σ on \varDelta by introduction of a so-called Satake diagram of σ with respect to a σ -fundamental system Π .

We define $W_{\sigma} := \{w \in W | w \circ \sigma = \sigma \circ w\}$, $\overline{w} :=$ the restriction of an element w in W_{σ} to \overline{E} and $\overline{W} := \{\overline{w} | w \in W_{\sigma}\}$. Schattschneider [6] studied the action of a general automorphism group G on the root system of a semisimple algebraic group and determined under which conditions $\widetilde{\Delta}$ is a root system with Weyl group \overline{W} . In §3 we will give easier proofs of these results in our less general context of $G = \{1, \sigma\}$. In §4 we show that the property of $\widetilde{\Delta}$ being a root