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1. Riemann surfaces.

Let 2 be a Riemann surface with ¢ 0s. Let ky(w, w)dwda denote the
Bergman kernel of the Hilbert space of square integrable abelian differentials
a(w)dw on 2. It has the reproducing property

@ a(w):%SSQa(w)ko(w, w)dudy .

We use the notation of Ahlfors and Sario [1, p. 302] which differs from that of
Sario and Oikawa [7, p. 104] by a factor =.

Let cg(w)|dw| denote the capacity metric of the ideal boundary of 2 [7,
p. 55]. If g(w, w) denotes the Green’s function of £ with pole at @ then
1.2) gw, w)=—log|w—w|—logcs(w)+o(l) as w—w.

The second author [8] conjectured that
1.3) ko, w)=cs(w)? for wef

and proved this for the special case that £ is a doubly connected plane domain.
We shall prove a weaker inequality. Let A(w)|dw| denote the Poincaré
metric of £2 which has constant curvature —4.

THEOREM 1. If Q&0 then, for ws £,

Aw)
cplw)

(1.4) koo, 0)Zes@)” / (8log +6log2).

We shall reformulate this theorem for Fuchsian groups and then prove it
in that form.

If £ is a Riemann surface such that c¢z(w)/2(w) is bounded below then (1.4)
implies ko(w, w)=const. cg(w)®. This assumption holds, in particular, if £ is a
plane domain with uniformly perfect boundary [5]. Examples are given by the
complement of the Cantor set or the limit set of finitely generated Fuchsian
groups.



