J. Math. Soc. Japan Vol. 36, No. 4, 1984

Capacities and Bergman kernels for Riemann surfaces and Fuchsian groups

Dedicated to Professor Yûsaku Komatu on his 70th birthday

By Christian POMMERENKE and Nobuyuki SUITA

(Received Oct. 31, 1983)

1. Riemann surfaces.

Let Ω be a Riemann surface with $\Omega \notin O_G$. Let $k_0(w, \omega)dwd\overline{\omega}$ denote the Bergman kernel of the Hilbert space of square integrable abelian differentials a(w)dw on Ω . It has the reproducing property

(1.1)
$$a(\omega) = \frac{1}{\pi} \iint_{\mathcal{Q}} a(w) \overline{k_0(w, \omega)} du dv.$$

We use the notation of Ahlfors and Sario [1, p. 302] which differs from that of Sario and Oikawa [7, p. 104] by a factor π .

Let $c_{\beta}(\omega)|d\omega|$ denote the capacity metric of the ideal boundary of Ω [7, p. 55]. If $g(w, \omega)$ denotes the Green's function of Ω with pole at ω then

(1.2)
$$g(w, \omega) = -\log |w - \omega| - \log c_{\beta}(\omega) + o(1) \quad \text{as} \quad w \to \omega.$$

The second author [8] conjectured that

(1.3)
$$k_0(\omega, \omega) \ge c_\beta(\omega)^2 \quad \text{for} \quad \omega \in \Omega$$

and proved this for the special case that Ω is a doubly connected plane domain.

We shall prove a weaker inequality. Let $\lambda(\omega) |d\omega|$ denote the Poincaré metric of Ω which has constant curvature -4.

THEOREM 1. If $\Omega \notin O_G$ then, for $\omega \in \Omega$,

(1.4)
$$k_0(\omega, \omega) \ge c_\beta(\omega)^2 / \left(8 \log \frac{\lambda(\omega)}{c_\beta(\omega)} + 6 \log 2 \right).$$

We shall reformulate this theorem for Fuchsian groups and then prove it in that form.

If Ω is a Riemann surface such that $c_{\beta}(\omega)/\lambda(\omega)$ is bounded below then (1.4) implies $k_0(\omega, \omega) \ge \text{const.} c_{\beta}(\omega)^2$. This assumption holds, in particular, if Ω is a plane domain with uniformly perfect boundary [5]. Examples are given by the complement of the Cantor set or the limit set of finitely generated Fuchsian groups.