Maximal surfaces with conelike singularities

By Osamu Kobayashi

(Received Oct. 4, 1983)

A spacelike surface in the 3-dimensional Minkowski space $L^{3}=\left(\boldsymbol{R}^{3}, d x^{2}+d y^{2}\right.$ $-d z^{2}$) is said to be maximal if the mean curvature vanishes identically. Any spacelike surface in L^{3} can be represented locally as the graph $\{z=u(x, y)\}$ of a smooth function u with $u_{x}^{2}+u_{y}^{2}<1$. Then the surface is maximal if u satisfies the equation:

$$
\left(1-u_{x}^{2}\right) u_{y y}+2 u_{x} u_{y} u_{x y}+\left(1-u_{y}^{2}\right) u_{x x}=0 .
$$

This equation is elliptic when $u_{x}^{2}+u_{y}^{2}<1$, but the ellipticity degenerates when $u_{x}^{2}+u_{y}^{2}$ tends to 1 . Related to this fact, maximal surfaces often have singularities which are of different kinds from those appearing in minimal surfaces in the Euclidean space. For example, consider a surface S in L^{3} defined by

$$
\left\{\begin{array}{l}
x(\rho, \theta)=\frac{1}{k+1} \sinh ((k+1) \rho) \cos ((k+1) \theta)+\frac{1}{k-1} \sinh ((k-1) \rho) \cos ((k-1) \theta), \\
\quad\left(=\frac{1}{2} \sinh 2 \rho \cos 2 \theta+\rho, \text { if } k=1\right), \\
y(\rho, \theta)=
\end{array} \begin{array}{rl}
k+1 & \sinh ((k+1) \rho) \sin ((k+1) \theta)-\frac{1}{k-1} \sinh ((k-1) \rho) \sin ((k-1) \theta), \\
\quad(& \left.=\frac{1}{2} \sinh 2 \rho \sin 2 \theta, \text { if } k=1\right), \\
z(\rho, \theta) & =-\frac{2}{k} \sinh (k \rho) \cos (k \theta), \quad(=-2 \rho, \text { if } k=0), \quad \rho>0, \quad 0 \leqq \theta<2 \pi
\end{array}\right.
$$

$k=0$

$k=1$

Figure 1.

