On the Stark-Shintani conjecture and cyclotomic Z_p -extensions of class fields over real quadratic fields

By Jin NAKAGAWA

(Received July 29, 1983)

§1. Introduction.

Let F be a real quadratic field embedded in the real number field R. Let M be a finite abelian extension of F in which exactly one of the two infinite primes of F, corresponding to the prescribed embedding of F into R, splits. Let \mathfrak{f} be the conductor of M/F. Denote by $H_F(\mathfrak{f})$ the group consisting of all narrow ray classes of F defined modulo \mathfrak{f} . Let G be the subgroup of $H_F(\mathfrak{f})$ corresponding to M by class field theory. Take a totally positive integer ν of F satisfying $\nu + 1 \in \mathfrak{f}$, and denote by the same letter ν the narrow ray class modulo \mathfrak{f} represented by the principal ideal (ν). For each $c \in H_F(\mathfrak{f})$, set $\zeta_F(s, c) = \sum_{\alpha} N(\alpha)^{-s}$, where α runs over all integral ideals of F belonging to the ray class c. It is known that $\zeta_F(s, c)$ is holomorphic on the whole complex plane except for a

simple pole at s=1.

The Stark-Shintani ray class invariant $X_{f}(c)$ is defined by

(1)
$$X_{\mathfrak{f}}(c) = \exp\left(\zeta'_{F}(0, c) - \zeta'_{F}(0, c\nu)\right) \qquad (c \in H_{F}(\mathfrak{f}))$$

(see Stark [7] and Shintani [5], the notation $X_{\mathfrak{f}}(c)$ is due to [5]). Obviously, $X_{\mathfrak{f}}(c\nu) = X_{\mathfrak{f}}(c)^{-1}$. In his paper [5], T. Shintani expressed this invariant $X_{\mathfrak{f}}(c)$ as a product of certain special values of the double gamma function of E.W. Barnes. In particular, he proved that $X_{\mathfrak{f}}(c)$ is a positive real number. Put $X_{\mathfrak{f}}(c, G) = \prod_{g \in G} X_{\mathfrak{f}}(cg)$. Then $X_{\mathfrak{f}}(c, G)$ depends only on $c \in H_F(\mathfrak{f})/G$. In [7] and [8], H. M. Stark presented a striking conjecture on the arithmetic nature of the invariant $X_{\mathfrak{f}}(c, G)$. Shintani found it independently and reformulated it in [5] into a more precise form.

CONJECTURE 1. For some positive rational integer m, $X_{\mathfrak{f}}(c, G)^m$ is a unit of $M(\forall c \in H_F(\mathfrak{f})/G)$. Moreover, $\{X_{\mathfrak{f}}(c, G)^m\}^{\sigma(c_0)} = X_{\mathfrak{f}}(cc_0, G)^m (\forall c_0 \in H_F(\mathfrak{f})/G)$, where σ is the Artin isomorphism of $H_F(\mathfrak{f})/G$ onto the Galois group $\operatorname{Gal}(M/F)$.

Shintani introduced in [5] another invariant $Y_{\mathfrak{f}}(c, G)$ to prove Conjecture 1 in some special non-trivial cases (for the definition of $Y_{\mathfrak{f}}(c, G)$, see (18) and (20)