On the asymptotic behavior of incompressible viscous fluid motions past bodies

By Ryûichi MIzUmachi

(Received Dec. 12, 1981)
(Revised Sept. 28, 1983)

§ 1. Introduction.

Let Ω be a domain exterior to a finite number of bodies in E_{3} with the smooth boundary $\partial \Omega$. The motion of the incompressible viscous fluid in Ω is described by the following system of the Navier-Stokes equations for the velocity $\boldsymbol{u}=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ of the fluid and the pressure $\boldsymbol{p}=\boldsymbol{p}(x, t) ;$

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial t} \boldsymbol{u}-\nu \Delta \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\operatorname{grad} \boldsymbol{p}=0 \tag{1.i}\\
\operatorname{div} \boldsymbol{u}=0
\end{array} \quad(x, t) \in Q_{T},\right.
$$

where ν is a positive constant - "viscousity constant", $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=u_{i} \partial \boldsymbol{u} / \partial x_{i}, 0<T \leqq$ ∞ and Q_{T} is the space time region $\Omega \times(0, T)$. Here and in what follows we use the conventional rule of tensor that repeated suffix means the summation with respect to the suffix.

We consider a flow \boldsymbol{u} satisfying initial-boundary conditions;

$$
\begin{array}{ll}
\boldsymbol{u}(x, 0)=\boldsymbol{a}(x), & x \in \Omega \\
\boldsymbol{u}(x, t)=\boldsymbol{b}(x, t) & x \in \partial \Omega, 0 \leqq t<T \tag{1.3}
\end{array}
$$

where \boldsymbol{a} and \boldsymbol{b} are given smooth and bounded functions such that $\operatorname{div} \boldsymbol{a}=0$ and $\boldsymbol{a}(x)=\boldsymbol{b}(x, 0)$ for $x \in \partial \Omega$, and \boldsymbol{u}_{∞} is a prescribed constant vector. We are mainly concerned with the decay rate of $\left|\boldsymbol{u}(x, t)-\boldsymbol{u}_{\infty}\right|$ as $|x| \rightarrow \infty$; for the existence of solutions, see [7], [11], [14], [15] and especially [9], [10], [17] and [18].

In the case that $\boldsymbol{b}(x, t)$ is independent of t, R. Finn $[4,5,6]$ showed that if a stationary solution \boldsymbol{u}_{s} of (1.1), (1.3), and (1.4) has finite Dirichlet norm; $\left\|\nabla \boldsymbol{u}_{s}\right\|_{L^{2}(\Omega)}<\infty$, and satisfies

$$
\begin{equation*}
\boldsymbol{u}_{s}(x)=\boldsymbol{u}_{\infty}+O\left(|x|^{-\alpha}\right) \tag{1.5}
\end{equation*}
$$

where α is a constant, $\alpha>1 / 2$, then

