On the behavior at infinity of logarithmic potentials

By Yoshihiro MIzUTA

(Received Sept. 24, 1983)

1. Statement of results.

For a (signed) measure λ in the plane R^{2}, we define

$$
L \lambda(x)=\int \log \frac{1}{|x-y|} d \lambda(y)
$$

if the integral exists at x. We note that $L \lambda(x)$ is finite for some x if and only if

$$
\begin{equation*}
\int \log (1+|y|) d|\lambda|(y)<\infty, \tag{1}
\end{equation*}
$$

where $|\lambda|$ denotes the total variation of λ. Denote by $B(x, r)$ the open disc with center at x and radius r. For $E \subset B(0,2)$ we set

$$
C(E)=\inf \mu\left(R^{2}\right),
$$

where the infimum is taken over all nonnegative measures μ on R^{2} such that S_{μ} (the support of $\mu) \subset B(0,4)$ and

$$
\int \log \frac{8}{|x-y|} d \mu(y) \geqq 1 \quad \text { for every } \quad x \in E .
$$

A set E in R^{2} is said to be thin at infinity if

$$
\begin{equation*}
\sum_{j=1}^{\infty} j C\left(E_{j}^{\prime}\right)<\infty, \quad E_{j}^{\prime}=\left\{x \in B(0,2)-B(0,1) ; 2^{j} x \in E\right\} \tag{2}
\end{equation*}
$$

It is known (cf. Brelot [1; Theorem IX, 7]) that if μ is a nonnegative measure on R^{2} satisfying (1), then there exists a set $E \subset R^{2}$ which is thin at infinity and for which

$$
\lim _{|x| \rightarrow \infty, x \in R^{2}-E_{0}}\left[L \mu(x)+\mu\left(R^{2}\right) \log |x|\right]=0
$$

Our first aim is to establish the following result.
Theorem 1. Let μ be a nonnegative measure on R^{2} satisfying (1). Then there exists a set E in R^{2} such that

$$
\begin{gather*}
\lim _{|x| \rightarrow \infty, x \in R^{2}-E}(\log |x|)^{-1} L \mu(x)=-\mu\left(R^{2}\right), \\
\sum_{j=1}^{\infty} j^{2} C\left(E_{j}^{\prime}\right)<\infty \tag{3}
\end{gather*}
$$

