On spectral geometry of Kaehler submanifolds

By Antonio ROS

(Received Feb. 7, 1983) (Revised July 7, 1983)

Introduction.

Let $x : M^n \to E^N$ be an isometric immersion of a compact Riemannian manifold into the Euclidean space. Let Δ be the Laplace-Beltrami operator of Macting on differentiable functions and $\operatorname{Spec}(M) = \{0 < \lambda_1 \cdots \lambda_1 < \lambda_2 \cdots \lambda_2 < \cdots\}$ the spectrum of Δ , where each eigenvalue is repeated as many times as its multiplicity indicates. If $\phi : M \to E^N$ is a differentiable mapping we put $\phi = (\phi^1, \cdots, \phi^N)$, where ϕ^i is the *i*-th coordinate function of ϕ , and $\Delta \phi = (\Delta \phi^1, \cdots, \Delta \phi^N)$. We have the decomposition $x = \sum_k x_k$, $k \in N$, where $x_k : M \to E^N$ is a differentiable mapping, $\Delta x_k = \lambda_k x_k$, and the addition is convergent, componentwise, for the L^2 -topology on $C^{\infty}(M)$. Moreover x_0 is a constant mapping (it is the center of gravity of M) and $\{x_k\}_k$ are orthogonal mappings, that is

$$\int_{\mathcal{M}} g(x_k, x_r) = 0 \quad \text{for all} \quad k, r, \quad k \neq r,$$

where g is the Euclidean metric on E^N . We have the relations

$$\Delta x = -nH = \sum_{k \ge 1} \lambda_k x_k ,$$

$$\Delta^2 x = -n\Delta H = \sum_{k \ge 1} \lambda_k^2 x_k ,$$

where H is the mean curvature vector of M in E^N . Let $k_1, k_2 \in N$, $0 \leq k_1 < k_2$. We say that the immersion x is of order $\{k_1, k_2\}$ if

$$x_k=0$$
 for all $k\in N$, $k\neq 0$, k_1 or k_2 .

If $k_1=0$ we say simply that the immersion is of order k_2 .

It is well-known that the complex projective space, CP^m , with the Fubini-Study metric, admits an isometric imbedding of order 1 in the Euclidean space, which has parallel second fundamental form. In [11] S. Tai gives a simple version of this one. From this fact we can view any submanifold, M^n , of CP^m as a submanifold of the Euclidean space, $x : M^n \rightarrow E^N$. In [10] we have obtained some information about the spectral geometry of submanifolds in the complex projective space, studying Δx and the order k immersion. In this paper