Pseudo-differential operators and Markov processes

By Takashi KOMATSU

(Received March 4, 1983) (Revised May 31, 1983)

0. Introduction.

Given a Lévy type generator L acting on test functions on \mathbb{R}^d , there are various formulations of Markov processes associated with L. One is a weak solution of the stochastic differential equation of jump type with coefficients corresponding to the local characteristics of the operator L. Another is a Markov process whose resolvent $\{R_{\lambda}\}$ satisfies that $R_{\lambda}(\lambda - L)f = f$ for any test function f. These formulations are unified as the martingale problem for the operator L. Each probability measure P on the path space is said to solve the martingale problem for L if the process

$$f(X_t) - f(X_0) - \int_0^t Lf(X_s) ds$$

is a *P*-martingale for any test function f on \mathbb{R}^d . The martingale problem was introduced by Stroock and Varadhan [15] to prove the uniqueness of the diffusion process whose generator is a given elliptic differential operator with continuous coefficients. In the present paper we shall discuss the existence and the uniqueness of solutions of the martingale problem for a class of *non-degenerate* Lévy type generators L whose local characteristics are not always continuous, to prove the existence and the uniqueness of Markov processes with jumps having L as their generators. Grigelionis [6] and [7] gave another martingale formulation for jump type processes.

We shall say that a Lévy type generator L is non-degenerate if it is so as a pseudo-differential operator, i.e. there is a constant α , $0 < \alpha \leq 2$, and

$$e^{-ix\cdot\xi}L(e^{ix\cdot\xi})=\phi^{(\alpha)}(x,\xi)+\phi^{(\alpha)}(x,\xi),$$

where $\psi^{(\alpha)}(x, \xi)$ is a homogeneous function in ξ with index α such that the real part of $\psi^{(\alpha)}(x, \xi)$ is strictly negative for $\xi \neq 0$, and $\phi^{(\alpha)}(x, \xi) = o(|\xi|^{\alpha})$ for large $|\xi|$. In the case $\alpha = 2$, the existence and the uniqueness were discussed by Komatsu [9] and Stroock [14]. So far, for $\alpha \neq 2$, they have been investigated only in the context that the real part of the principal part $\psi^{(\alpha)}(x, \xi)$ of the symbol of L is independent of the variable x. Tsuchiya [17] investigated the