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Introduction.

The problem we want to discuss in the present paper is that of the asymp-
totic number of bound state energies (negative eigenvalues) of the Schr\"odinger
operator $-\Delta+\lambda V,$ $\lambda>0$ , in the strong coupling limit $\lambdaarrow\infty$ . This problem has
been already discussed by many authors. See, for example, Birman-Borzov [5],

Kac [10], Lieb [13], Martin [14], Reed-Simon [17], Rosenbljum [19] and the
references quoted there. Roughly speaking, in the case of 3-dimensional space
$R_{x}^{3}$ , the result obtained by these authors can be formulated as follows: Assume
that $V(x)$ is real and $V(x)\in L^{3/2}(R_{x}^{3}),$ $L^{p}(R_{x}^{3})$ being the Lebesgue space, and
denote by $N(\lambda)$ the number of bound state energies of $-\Delta+\lambda V$ . Then $N(\lambda)$

obeys the asymptotic formula

$N( \lambda)=(6\pi^{2})^{-1}\int|V_{-}(x)|^{3/2}dx\lambda^{3/2}(1+o(1))$ , $\lambdaarrow\infty$ ,

where $V_{-}(x)$ denotes the attractive part of $V(x);V_{-}(x)= \min(0, V(x))$ , and the
integration is taken over the whole space $R_{x}^{3}$ . (Here and in what follows, in-
tegration with no domain attached is taken over the whole space.) For the proof,
[5], [14] and [19] use the min-max principle combined with a technique of Diri-
chlet-Neumann bracketing, while [10], [13] and [17] use the Feynman-Kac
formula. The aim of the present paper is to derive a similar asymptotic formula
with the improved remainder estimate $O(\lambda^{-1/2})$ under rather restrictive assump-
tions on $V(x)$ .

We shall formulate the main theorem precisely. We work in the 3-dimen-
sional space and consider only a class of attractive potentials, so it is convenient
in the discussion below to write the Schr\"odinger operator as $-\Delta-\lambda V,$ $V>0$ ,

without using the standard notation $-\Delta+\lambda V$ . Furthermore, the class of poten-
tials we consider admits finite singularities. For brevity, we confine ourselves
to potentials having singularities at the origin only. Such potentials are impor-
tant in a physical application.

First, we make the assumptions on $V(x)$ , which specify the behavior of $V(x)$

as $|x|arrow 0$ and as $|x|arrow\infty$ . To describe these assumptions, we follow the standard


