The asymptotic formulas for the number of bound states in the strong coupling limit

By Hideo TAMURA

(Received Oct. 4, 1982)

Introduction.

The problem we want to discuss in the present paper is that of the asymptotic number of bound state energies (negative eigenvalues) of the Schrödinger operator $-\Delta + \lambda V$, $\lambda > 0$, in the strong coupling limit $\lambda \rightarrow \infty$. This problem has been already discussed by many authors. See, for example, Birman-Borzov [5], Kac [10], Lieb [13], Martin [14], Reed-Simon [17], Rosenbljum [19] and the references quoted there. Roughly speaking, in the case of 3-dimensional space \mathbf{R}_x^3 , the result obtained by these authors can be formulated as follows: Assume that V(x) is real and $V(x) \in L^{3/2}(\mathbf{R}_x^3)$, $L^p(\mathbf{R}_x^3)$ being the Lebesgue space, and denote by $N(\lambda)$ the number of bound state energies of $-\Delta + \lambda V$. Then $N(\lambda)$ obeys the asymptotic formula

$$N(\lambda) = (6\pi^2)^{-1} \left| |V_{-}(x)|^{3/2} dx \, \lambda^{3/2} (1+o(1)), \qquad \lambda \to \infty, \right.$$

where $V_{-}(x)$ denotes the attractive part of V(x); $V_{-}(x) = \min(0, V(x))$, and the integration is taken over the whole space \mathbb{R}_{x}^{3} . (Here and in what follows, integration with no domain attached is taken over the whole space.) For the proof, [5], [14] and [19] use the min-max principle combined with a technique of Dirichlet-Neumann bracketing, while [10], [13] and [17] use the Feynman-Kac formula. The aim of the present paper is to derive a similar asymptotic formula with the improved remainder estimate $O(\lambda^{-1/2})$ under rather restrictive assumptions on V(x).

We shall formulate the main theorem precisely. We work in the 3-dimensional space and consider only a class of attractive potentials, so it is convenient in the discussion below to write the Schrödinger operator as $-\Delta - \lambda V$, V > 0, without using the standard notation $-\Delta + \lambda V$. Furthermore, the class of potentials we consider admits finite singularities. For brevity, we confine ourselves to potentials having singularities at the origin only. Such potentials are important in a physical application.

First, we make the assumptions on V(x), which specify the behavior of V(x) as $|x| \rightarrow 0$ and as $|x| \rightarrow \infty$. To describe these assumptions, we follow the standard