A singular quasilinear diffusion equation in L^1

By Ralph E. SHOWALTER

(Received Dec. 20, 1982)

1. Introduction.

The initial and Dirichlet boundary value problem for the equation $u_t - \Delta \alpha(u) + \beta(u) \ni f$ has a unique generalized or integral solution in L^1 when α and β are maximal monotone graphs in \mathbf{R} , each containing the origin, and at each point of their common domain either one of α or β is single-valued. Weak Maximum and Comparison Principles follow from an L^{∞} estimate on the solution and from an L^1 estimate on the difference of solutions, respectively. This L^1 integral solution is shown to satisfy the above partial differential equation in the sense of distributions when α is surjective (or the data is bounded) and β is continuous.

We shall consider the initial-boundary-value problem

(1.a)
$$u_t - \Delta v + w = f$$
, $v \in \alpha(u)$, $w \in \beta(u)$ in Ω
(1.b) $v = 0$ on $\partial G \times (0, T)$
(1.c) $u = u_0$ on $G \times \{0\}$

where G is a bounded domain in \mathbb{R}^n , $\Omega \equiv G \times (0, T)$, Δ is the Laplacian in \mathbb{R}^n , and α and β are maximal monotone graphs in $\mathbb{R} \times \mathbb{R}$, each containing the origin. The problem (1) will be regarded as an abstract Cauchy problem of the form

(2.a)
$$u'(t) + A(u(t)) + B(u(t)) \ni f(t)$$
, a.e. $t \in (0, T)$

(2.b)
$$u(0) = u_0$$

in the Banach space $L^{1}(G)$. An integral solution of (2) in a Banach space X is a $u \in C(0, T; X)$ such that $u(0)=u_{0}$ and $u(t)\in \overline{\operatorname{dom}(A+B)}$,

$$\frac{1}{2} \|u(t) - x\|^2 \leq \frac{1}{2} \|u(s) - x\|^2 + \int_s^t \langle f(\tau) - y, u(\tau) - x \rangle d\tau$$

for each $y \in (A+B)(x)$ and $0 \le s \le t \le T$. The pairing in the integral is the semi-scalar-product

$$\langle y, x \rangle \equiv \sup\{(y, x^*) : x^* \in X^*, x^*(x) = ||x|| = ||x^*||\}$$

on the Banach space X. A multi-valued operator $A \subset X \times X$ is called *accretive* if