Extension of modifications of ample divisors on fourfolds

By Maria Lucia FANIA

(Received Sept. 20, 1982) (Revised Jan. 25, 1983)

Introduction.

In this article we consider the following problem: Let A be an ample divisor on a connected four dimensional projective manifold X. Assume that the Kodaira dimension of X is non-negative. Suppose that A is the blow up of a projective manifold A' with center R_g where R_g is a smooth curve of genus ≥ 1 which is contained in A'.

Does there exist a four dimensional manifold X' such that A' lies on X' as a divisor and such that X is the blow up of X' with center R_g ?

The answer to this question turned out to be positive. In fact following Sommese's idea, see [13], we construct a divisor D on X with the following properties:

1) $D \cap A = Y$, where Y is the exceptional divisor on A over R_g

2) the natural projection $Y \to R_g$ can be extended to a surjective holomorphic map $\tilde{p}: D \to R_g$

3) \tilde{p} makes D a P^2 -bundle over R_g where dim A'-dim $R_g=2$. Moreover, each fibre f' of Y over $x \in R_g$ is a hyperplane on $F = \tilde{p}^{-1}(x) \cong P^2$.

4) $[D]_F = \mathcal{O}_{P^2}(-1).$

The above is enough to ensure the existence of X' such that A' is a divisor on X' and X is the blow up of X' with center R_g , see [8].

The above problem, in a more general setting, was already considered by Sommese in [14] and by Fujita in [3]. In fact they set up the problem for a projective manifold X of any dimension and without any assumption on the Kodaira dimension of X. Sommese in [14] showed that when $\operatorname{codim}_{A'}R>2$ then there is an analytic set of codimension one in X that satisfies the condition for it to be blown down if the map $\tilde{p}: X \to X'$ existed. Fujita in [3] showed that the problem could be solved in the case $\operatorname{codim}_{A'}R>2$ where R is a submanifold of A' along which we blow up.

We need the non-negativity of the Kodaira dimension for the theorem to be true. In fact given any projective threefold A there is a P^1 -bundle X over A