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Introduction.

In this article we consider the following problem: Let $A$ be an ample divisor
on a connected four dimensional projective manifoId $X$. Assume that the Kodaira
dimension of $X$ is non-negative. Suppose that $A$ is the blow up of a projective
manifold $A’$ with center $R_{g}$ where $R_{g}$ is a smooth curve of genus $\geqq 1$ which is
contained in $A’$ .

Does there exist a four dimensional manifold $X’$ such that $A’$ lies on $X’$ as
a divisor and such that $X$ is the blow up of $X’$ with center $R_{g}$ ?

The answer to this question turned out to be positive. In fact following
Sommese’s idea, see [13], we construct a divisor $D$ on $X$ with the following
properties:

1) $D\cap A=Y$ , where $Y$ is the exceptional divisor on $A$ over $R_{g}$

2) the natural projection $Yarrow R_{g}$ can be extended to a surjective holomor-
phic map $\tilde{p}:Darrow R_{g}$

3) $\tilde{p}$ makes $D$ a $P^{2}$-bundle over $R_{g}$ where $\dim A’-\dim R_{g}=2$ . Moreover,
each fibre $f’$ of $Y$ over $x\in R_{g}$ is a hyperplane on $F=\tilde{p}^{-1}(x)\cong P^{2}$ .

4) $[D]_{F}=o_{p2}(-1)$ .
The above is enough to ensure the existence of $X’$ such that $A’$ is a divisor on
$X’$ and $X$ is the blow up of $X’$ with center $R_{g}$ , see [8].

The above problem, in a more general setting, was already considered by
Sommese in [14] and by Fujita in [3]. In fact they set up the problem for a
proiective manifold $X$ of any dimension and without any assumption on the
Kodaira dimension of $X$. Sommese in [14] showed that when $co\dim_{A’}R>2$ then
there is an analytic set of codimension one in $X$ that satisfies the condition for it
to be blown down if the map $\tilde{p}$ : $Xarrow X’$ existed. Fujita in [3] showed that the
problem could be solved in the case $co\dim_{A’}R>2$ where $R$ is a submanifold of
$A’$ along which we blow up.

We need the non-negativity of the Kodaira dimension for the theorem to be
true. In fact given any projective threefold $A$ there is a $P^{1}$-bundle $X$ over $A$


