Leopoldt's conjecture and Reiner's theorem

By Hiroo MIKI and Hirotaka SATO

(Received Oct. 6, 1982) (Revised Nov. 22, 1982)

§1. Introduction.

Let p be a prime number and let k be a finite algebraic number field. Let k_v be the completion of k with respect to a prime divisor v of k, and let S_k be the set of all prime divisors of k lying over p. Let E_k be the group of units ε of k such that $\varepsilon \in U_v^{(1)}$ for all $v \in S_k$, where $U_v^{(1)}$ is the group of principal units of k_v . Imbed E_k into $\prod_{v \in S_k} U_v^{(1)}$ in the natural way and take the topological closure \overline{E}_k of E_k in $\prod_{v \in S_k} U_v^{(1)}$. Put $\delta_k = \operatorname{rank}_Z E_k - \operatorname{rank}_Z p \overline{E}_k$, where Z and Z_p are the rings of integers and p-adic integers respectively. Leopoldt [4] conjectured that $\delta_k = 0$ for any prime number p.

Let K/k be a finite Galois *p*-extension with Galois group *G*. In [7, Corollary to Theorem 2], we proved the Leopoldt conjecture for (K, p) under certain strong conditions on *k* and the ramification of K/k. The purpose of the present paper is to give another proof of this theorem by considering the $\mathbb{Z}_p[G]$ -module structure of the Galois group X_K^* of the composite of all \mathbb{Z}_p -extensions of *K* based on Reiner's theorem [1, Theorem (74.3)] when K/k is a cyclic extension of degree p (Theorem and its Corollary).

§2. The G-module structure of the Galois group of the composite of Z_p -extensions of K.

Let M_k be the maximal *p*-ramified abelian *p*-extension of *k* and let M_k^* be the composite of all \mathbb{Z}_p -extensions of *k*. Let L_k and L_k^* be the maximal elementary abelian *p*-extension of *k* in M_k and M_k^* respectively. Put $X_k = G(M_k/k)$ and $X_k^* = G(M_k^*/k)$. Then M_K^*/k is a Galois extension and X_K^* becomes a *G*module by $\sigma\tau = \tilde{\sigma}\tau \tilde{\sigma}^{-1}$ ($\tau \in X_K^*$), where σ is a generator of *G* and $\tilde{\sigma}$ is an extension of σ to M_K^* . From now on, we assume that K/k is unramified at all infinite primes of *k* if p=2. By [2, Theorem 3], X_K^* is a free \mathbb{Z}_p -module of rank $(pr_2+1+\delta_K)$, where $r_2=r_2(k)$ is the number of complex places of *k*. Hence by Reiner's theorem [1, Theorem (74.3)],