Leopoldt's conjecture and Reiner's theorem

By Hiroo Miki and Hirotaka Sato

(Received Oct. 6, 1982)
(Revised Nov. 22, 1982)

§ 1. Introduction.

Let p be a prime number and let k be a finite algebraic number field. Let k_{v} be the completion of k with respect to a prime divisor v of k, and let S_{k} be the set of all prime divisors of k lying over p. Let E_{k} be the group of units ε of k such that $\varepsilon \in U_{v}^{(1)}$ for all $v \in S_{k}$, where $U_{v}^{(1)}$ is the group of principal units of k_{v}. Imbed E_{k} into $\prod_{v \in S_{k}} U_{v}^{(1)}$ in the natural way and take the topological closure \bar{E}_{k} of E_{k} in $\prod_{v \in S_{k}} U_{v}^{(1)}$. Put $\delta_{k}=\operatorname{rank}_{z} E_{k}-\operatorname{rank}_{z_{p}} \bar{E}_{k}$, where \boldsymbol{Z} and Z_{p} are the rings of integers and p-adic integers respectively. Leopoldt [4] conjectured that $\delta_{k}=0$ for any prime number p.

Let K / k be a finite Galois p-extension with Galois group G. In [7, Corollary to Theorem 2], we proved the Leopoldt conjecture for (K, p) under certain strong conditions on k and the ramification of K / k. The purpose of the present paper is to give another proof of this theorem by considering the $\boldsymbol{Z}_{p}[G]$-module structure of the Galois group X_{K}^{*} of the composite of all \boldsymbol{Z}_{p}-extensions of K based on Reiner's theorem [1, Theorem (74.3)] when K / k is a cyclic extension of degree p (Theorem and its Corollary).
§ 2. The G-module structure of the Galois group of the composite of Z_{p}-extensions of K.

Let M_{k} be the maximal p-ramified abelian p-extension of k and let M_{k}^{*} be the composite of all \boldsymbol{Z}_{p}-extensions of k. Let L_{k} and L_{k}^{*} be the maximal elementary abelian p-extension of k in M_{k} and M_{k}^{*} respectively. Put $X_{k}=G\left(M_{k} / k\right)$ and $X_{k}^{*}=G\left(M_{k}^{*} / k\right)$. Then M_{R}^{*} / k is a Galois extension and X_{K}^{*} becomes a G module by $\sigma \tau=\tilde{\sigma} \tau \tilde{\sigma}^{-1}\left(\tau \in X_{K}^{*}\right)$, where σ is a generator of G and $\tilde{\sigma}$ is an extension of σ to M_{R}^{*}. From now on, we assume that K / k is unramified at all infinite primes of k if $p=2$. By [2, Theorem 3], X_{R}^{*} is a free \boldsymbol{Z}_{p}-module of rank ($p r_{2}+1+\delta_{K}$), where $r_{2}=r_{2}(k)$ is the number of complex places of k. Hence by Reiner's theorem [1, Theorem (74.3)],

