Value distribution of the Gauss maps of complete minimal surfaces in \boldsymbol{R}^{m}

Dedicated to Professor M. Ozawa on the occasion of his 60th birthday

By Hirotaka FUJIMOTO

(Received Sept. 13, 1982)

§ 1. Introduction.

Concerning the value distribution of the Gauss maps of complete minimal surfaces in \boldsymbol{R}^{m}, there have been several results obtained by R. Osserman, S.S. Chern, F. Xavier and others ([10], [2], [7], [13]). Recently, the author proved that the Gauss map of a complete minimal surface in \boldsymbol{R}^{m} is necessarily degenerate if it omits more than m^{2} hyperplanes in $P^{m-1}(\boldsymbol{C})$ located in general position ([4]). The purpose of this paper is to give several improvements of these results.

Let f be a holomorphic map of an open Riemann surface M into $P^{n}(\boldsymbol{C})$ and H a hyperplane in $P^{n}(\boldsymbol{C})$ with $f(M) \not \subset H$. For an arbitrarily fixed positive integer μ_{0} we define the non-integrated defect of H for f by

$$
\delta_{\mu_{0}}^{f}(H):=1-\inf \{\eta \geqq 0: \eta \text { satisfying condition }(*)\} .
$$

Here, condition (*) means that there exists a non-negative smooth function v on M such that $\log v$ is subharmonic, $\log v \leqq \eta \log \|f\|$ and, in a neighborhood of each point $p \in f^{-1}(H)$,

$$
\log v(\zeta)-\min \left(\nu^{f}(H)(p), \mu_{0}\right) \log |\zeta-\zeta(p)|
$$

is subharmonic, where $\|f\|:=\left(\left|f_{1}\right|^{2}+\cdots+\left|f_{n+1}\right|^{2}\right)^{1 / 2}$ for a reduced representation $f=\left(f_{1}: \cdots: f_{n+1}\right), \zeta$ is a holomorphic local coordinate around p and $\nu^{f}(H)(p)$ denotes the intersection multiplicity of $f(M)$ and H at $f(p)$. We note that

$$
\begin{equation*}
\delta_{\mu_{0}}^{f}(H)=1 \tag{1.1}
\end{equation*}
$$

if $f(M) \cap H=\varnothing$, or more generally, if there is a bounded holomorphic function g on M such that g has zeros of order $\nu^{f}(H)(p)$ at each point $p \in f^{-1}(H)$. Moreover, we can show that

[^0]
[^0]: This research was partially supported by Grant-in-Aids for Scientific Research (No. 00546004 and No. 57540074), Ministry of Education.

