J. Math. Soc. Japan Vol. 35, No. 4, 1983

Value distribution of the Gauss maps of complete minimal surfaces in \mathbb{R}^m

Dedicated to Professor M. Ozawa on the occasion of his 60th birthday

By Hirotaka FUJIMOTO

(Received Sept. 13, 1982)

§1. Introduction.

Concerning the value distribution of the Gauss maps of complete minimal surfaces in \mathbb{R}^m , there have been several results obtained by R. Osserman, S.S. Chern, F. Xavier and others ([10], [2], [7], [13]). Recently, the author proved that the Gauss map of a complete minimal surface in \mathbb{R}^m is necessarily degenerate if it omits more than m^2 hyperplanes in $P^{m-1}(C)$ located in general position ([4]). The purpose of this paper is to give several improvements of these results.

Let f be a holomorphic map of an open Riemann surface M into $P^n(C)$ and H a hyperplane in $P^n(C)$ with $f(M) \not\subset H$. For an arbitrarily fixed positive integer μ_0 we define the non-integrated defect of H for f by

$$\delta^f_{\mu_0}(H) := 1 - \inf \left\{ \eta \ge 0 \, : \, \eta \text{ satisfying condition } (*) \right\}.$$

Here, condition (*) means that there exists a non-negative smooth function v on M such that $\log v$ is subharmonic, $\log v \leq \eta \log ||f||$ and, in a neighborhood of each point $p \in f^{-1}(H)$,

$$\log v(\zeta) - \min(\nu^f(H)(p), \mu_0) \log |\zeta - \zeta(p)|$$

is subharmonic, where $||f|| := (|f_1|^2 + \cdots + |f_{n+1}|^2)^{1/2}$ for a reduced representation $f = (f_1 : \cdots : f_{n+1})$, ζ is a holomorphic local coordinate around p and $\nu^f(H)(p)$ denotes the intersection multiplicity of f(M) and H at f(p). We note that

$$\delta_{\mu_0}^f(H) = 1$$

if $f(M) \cap H = \emptyset$, or more generally, if there is a bounded holomorphic function gon M such that g has zeros of order $\nu^{f}(H)(p)$ at each point $p \in f^{-1}(H)$. Moreover, we can show that

This research was partially supported by Grant-in-Aids for Scientific Research (No. 00546004 and No. 57540074), Ministry of Education.