A remark on the values of the zeta functions associated with cusp forms

By Yoshitaka MaEda

(Received July 24, 1982)

Introduction

For two primitive cusp forms $f(z)=\sum_{n=1}^{\infty} a(n) e(n z)$ and $g(z)=\sum_{n=1}^{\infty} b(n) e(n z)$ $(e(z)=\exp (2 \pi i z), z \in \mathfrak{G}$: the upper half complex plane), we define a zeta function by

$$
D(s, f, g)=\sum_{n=1}^{\infty} a(n) b(n) n^{-s} \quad(s \in \boldsymbol{C}),
$$

and denote by K the field generated over \boldsymbol{Q} by $a(n)$ and $b(n)$ for all n. If the weight k of f is greater than the weight l of g, Shimura [4] proved that $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$ belongs to K for an integer m with $(1 / 2)(k+l-2)<m<k$, where \langle,$\rangle denotes the normalized Petersson inner product as in [4]. When K$ is a CM-field, namely, a totally imaginary quadratic extension over a totally real field F, we are going to show the divisibility of these special values by a certain polynomial of the Fourier coefficients $a(p)$ and $b(p)$ at prime divisors p of the level of these forms. Roughly speaking, $a(p)-\overline{b(p)} p^{e}$ with a certain integer e depending on k, m and p divides the numerator of $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$. More precisely, we have

Theorem 1. Let χ be the character of f and N the conductor of f. Assume that the character of g is the complex conjugate $\bar{\chi}$ of χ and g has the same conductor N as f. Write M for the conductor of χ. Let A be the set of prime divisors of N satisfying one of the following conditions:
$\left(\mathrm{C}_{\mathrm{a}}\right)$ The p-primary part of N is equal to that of M; or,
$\left(\mathrm{C}_{\mathrm{b}}\right) \quad \mathrm{p} \mid N, p^{2} \nmid N$ and $p \nmid M$.
Put

$$
C=N \times \prod_{p \in A}\left[a(p)^{\rho}\left\{a(p)-b(p)^{\rho} p^{k-\delta(p)-m}\right\}\right],
$$

where

$$
\delta(p)= \begin{cases}1 & \text { if } p \text { satisfies Condition }\left(\mathrm{C}_{\mathrm{a}}\right), \\ 2 & \text { if } p \text { satisfies Condition }\left(\mathrm{C}_{\mathrm{b}}\right),\end{cases}
$$

