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1. Introduction and results.

Let $E$ be a nuclear Fr\’echet space and $E’$ the topological dual space (of

which the Schwartz space $S’$ of tempered distributions is a typical one). We
denote by $\langle x, \xi\rangle,$ $x\in E’,$ $\xi\in E$ the canonical bilinear form on $E’\cross E$ . Let $X=$

$\{X_{t} ; t\in[0, \infty)\}$ be a stochastic process defined on a complete probability space
$(\Omega, \mathcal{F}, P)$ with values in $E’$ . In the previous paper [4] the author showed that
$X_{1}=\{X_{t} ; t\in[0,1]\}$ has a strongly continuous version if for each $\xi\in E$ , the
process $\langle X_{t}, \xi\rangle$ has a continuous version and satisfies the moment condition

(1.1) $\int_{\Omega c\in@}su|\langle X_{t}, \xi\rangle|\rho dP<+\infty$ ,

where $\rho>0$ and $Q$ is a countable dense subset of $[0,1]$ .

In this paper, we will prove the similar results without assuming the moment
condition. The results are stated as follows:

THEOREM 1. Let $E$ be a nuclear Frechet space and Xan E’-valued stochastic
process such that for each $\xi$ in $E$ the real stochastic process $X_{\xi}=\{\langle X_{t}, \xi\rangle;t\in$

$[0, \infty)\}$ has a continuous version. Then $X$ has a strongly continuous version.
THEOREM 2. Let $E$ be a nuclear Frechet space and $X$ an E’-valued stochastic

process such that for each $\xi$ in $E$ the real stochastic Process $X_{\xi}$ has a version
which is nght cmtinuous and has left-hand limits. Then $X$ has a version which
is right continuous and has left-hand limits in the strong toPology of $E’$ .

The proof of Theorem 1 will be given in Section 2. The proof of Theorem
2 is quite similar to that of Theorem 1, so that we will omit it. As applications
of Theorem 1, we will give a characterization of the existence of a continuous
version with respect to a certain norm and a generalized Kolmogorov’s criterion
for continuity in Section 3.
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