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\S 1. Introduction.

All groups considered here are finite. Let $H$ be a subgroup of a group $G$ .
We say that $H$ controls fusion in $H$ with respect to $G$ if $H$ has the property;
‘ Two elements of $H$ are conjugate in $G$ if and only if they are conjugate in H.’
If $H$ has a normal complement (that is, a normal subgroup $N$ of $G$ with $G=HN$

and $H\cap N=1$ ) in $G$ , then $H$ controls fusion in $H$ with respect to $G$ . But the
converse is false. For example, let $S_{n}$ be the symmetric group on $n$ letters,

where $n$ is greater than 4, and let $H$ be the stabilizer of one point. Then we
know that $H$ controls fusion in $H$ with respect to $S_{n}$ and $S_{n}$ has no normal
subgroups of order $n$ .

What conditions on $H$ guarantee that $H$ has a normal complement ? The
Brauer-Suzuki theorem answered the question for a Hall subgroup $H$ (see, for
example, Theorem 8.22 in [2]). In this paper, we shall give a more general
criterion for the existence of a normal complement of a subgroup $H$ in a group
$G$ . Before stating our result, we shall introduce the following notation:

Let $H$ be a subgroup of a group $G$ which controls fusion in $H$ with respect
to $G$ , and let $T,$ $M$ and $L$ be mappings from $H^{\#}$ to the family of subsets of $G$ ,

where $H^{\#}=H-\{1\}$ . Suppose $T,$ $M$ and $L$ satisfy the following conditions. Then
we say $(T, M, L)$ a complementary tnple of $H$ in $G$ .

(1.1) For every $h\in H^{\#}$ ,
(i) $T(h)$ is a subgroup of $G$ with $T(h)^{x}=T(h^{x})$ for $x\in H$,
(ii) $M(h)=hT(h)$ ,
(iii) $L(h)= \bigcup_{g\in G}M(h)^{g}$ ,

(iv) $N_{G}(M(h))=T(h)C_{H}(h)$ .
(1.2) Whenever $h\in H^{\#}$ and $g\in G,$ $M(h)\cap M(h)^{g}=\emptyset$ or $M(h)$ .
(1.3) ($G-$

$\bigcup_{\#,x\in H}L(x)I\cap N_{G}(M(h))=T(h)$ for every $h\in H^{\#}$ .
(1.4) Whenever $h_{1}$ and $h_{2}$ are elements of $H\#$ which are not conjugate in $G$ ,

then $L(h_{1})\cap L(h_{2})=\emptyset$ .
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