Arithmetic Fuchsian groups with signature ($1 ; e$)

By Kisao Takeuchi

(Received Jan. 11, 1982)

§ 1. Introduction.

In the previous papers [17], [18] we determined all arithmetic triangle Fuchsian groups. The purpose of this paper is to determine all arithmetic Fuchsian groups with signature $(1 ; e)$. In $\S 2$, we prove that for arbitrary nonnegative integers g and t there exist finitely many arithmetic Fuchsian groups with signature ($g ; e_{1}, e_{2}, \cdots, e_{t}$) up to $S L_{2}(\boldsymbol{R})$-conjugation (Theorem 2.1). In $\S 3$ we deal with arithmetic Fuchsian groups Γ with signature ($1 ; e$) (i.e. $g=1$, $t=1$). We give a necessary and sufficient condition for such a group Γ to be arithmetic. More precisely, assume that Γ contains -1_{2}. Then Γ has the following presentation:

$$
\Gamma=\left\langle\alpha, \beta, \gamma \mid \alpha \beta \alpha^{-1} \beta^{-1} \gamma=-1_{2}, \gamma^{e}=-1_{2}\right\rangle,
$$

where α and β are hyperbolic elements of $S L_{2}(\boldsymbol{R})$ and γ is an elliptic (resp. a parabolic) element such that $\operatorname{tr}(\gamma)=2 \cos (\pi / e)$. Among such triples (α, β, γ) of generators of Γ we can find a certain fundamental triple ($\alpha_{0}, \beta_{0}, \gamma_{0}$). Let $x=$ $\operatorname{tr}\left(\alpha_{0}\right), y=\operatorname{tr}\left(\beta_{0}\right), z=\operatorname{tr}\left(\alpha_{0} \beta_{0}\right)$. Then the condition for Γ to be arithmetic can be expressed in terms of x, y, z. We can also obtain an explicit expression of the quaternion algebra associated with Γ (Theorem 3.4). In $\S 4$ using Theorem 3.4 of $\S 3$ we determine all arithmetic Fuchsian groups with signature ($1 ; e$) and list them up (Theorem 4.1). In Fricke-Klein [7] we can find some examples of arithmetic Fuchsian groups with signature $(1 ; e)$.

§ 2. Arithmetic Fuchsian groups.

We recall the definition of arithmetic Fuchsian groups. Let k be a totally real algebraic number field of degree n. Then we have n distinct \boldsymbol{Q}-embeddings $\varphi_{i}(1 \leqq i \leqq n)$ of k into the real number field \boldsymbol{R}, where φ_{1} is the identity. Let A be a quaternion algebra over k which is unramified at the place φ_{1} and ramified at all other infinite places $\varphi_{i}(2 \leqq i \leqq n)$. Then there exists an \boldsymbol{R}-isomorphism

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540007), Ministry of Education.

