Arithmetic Fuchsian groups with signature (1; e)

By Kisao TAKEUCHI

(Received Jan. 11, 1982)

§1. Introduction.

In the previous papers [17], [18] we determined all arithmetic triangle Fuchsian groups. The purpose of this paper is to determine all arithmetic Fuchsian groups with signature (1; e). In §2, we prove that for arbitrary nonnegative integers g and t there exist finitely many arithmetic Fuchsian groups with signature $(g; e_1, e_2, \dots, e_t)$ up to $SL_2(\mathbf{R})$ -conjugation (Theorem 2.1). In §3 we deal with arithmetic Fuchsian groups Γ with signature (1; e) (i.e. g=1, t=1). We give a necessary and sufficient condition for such a group Γ to be arithmetic. More precisely, assume that Γ contains -1_2 . Then Γ has the following presentation:

$$\Gamma = \langle \alpha, \beta, \gamma \mid \alpha \beta \alpha^{-1} \beta^{-1} \gamma = -1_2, \gamma^e = -1_2 \rangle$$

where α and β are hyperbolic elements of $SL_2(\mathbf{R})$ and γ is an elliptic (resp. a parabolic) element such that $\operatorname{tr}(\gamma)=2\cos(\pi/e)$. Among such triples (α, β, γ) of generators of Γ we can find a certain fundamental triple $(\alpha_0, \beta_0, \gamma_0)$. Let $x = \operatorname{tr}(\alpha_0)$, $y = \operatorname{tr}(\beta_0)$, $z = \operatorname{tr}(\alpha_0\beta_0)$. Then the condition for Γ to be arithmetic can be expressed in terms of x, y, z. We can also obtain an explicit expression of the quaternion algebra associated with Γ (Theorem 3.4). In §4 using Theorem 3.4 of §3 we determine all arithmetic Fuchsian groups with signature (1; e) and list them up (Theorem 4.1). In Fricke-Klein [7] we can find some examples of arithmetic Fuchsian groups with signature (1; e).

§2. Arithmetic Fuchsian groups.

We recall the definition of arithmetic Fuchsian groups. Let k be a totally real algebraic number field of degree n. Then we have n distinct Q-embeddings φ_i $(1 \le i \le n)$ of k into the real number field **R**, where φ_1 is the identity. Let A be a quaternion algebra over k which is unramified at the place φ_1 and ramified at all other infinite places φ_i $(2 \le i \le n)$. Then there exists an **R**-isomorphism

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540007), Ministry of Education.