The 2 -adic representations attached to elliptic curves defined over Q whose points of order 2 are all Q-rational

By Kumiko Nishioka

(Received July 10, 1980)
(Revised Dec. 3, 1981)

0. Introduction.

Let E be an elliptic curve defined over the field \boldsymbol{Q} of rational numbers. Throughout the paper, an elliptic curve defined over \boldsymbol{Q} means an abelian variety of dimension one which is defined over \boldsymbol{Q}. Let G be the Galois group of extension $\overline{\boldsymbol{Q}} / \boldsymbol{Q}$, where $\overline{\boldsymbol{Q}}$ denotes an algebraic closure of \boldsymbol{Q}. Then the group G, with the Krull topology, is compact and totally disconnected. For each positive integer m, we denote by E_{m} the kernel of multiplication by m. Let p be a prime number. With the multiplication by $p: E_{p^{n+1}} \rightarrow E_{p^{n}}$, the sequence $\left\{E_{p^{n}}\right\}_{n=1,2, \ldots}$ forms a projective system. The Tate module $T_{p}(E)$ is defined as follows:

$$
T_{p}(E)=\underset{n \rightarrow \infty}{\operatorname{proj}} \lim E_{p^{n}} .
$$

The module $T_{p}(E)$ is a free \boldsymbol{Z}_{p}-module of rank 2 , where \boldsymbol{Z}_{p} denotes a p-adic completion of the ring \boldsymbol{Z} of rational integers, and G acts on $T_{p}(E)$. Fix a base $\left(\xi_{0}, \xi_{1}\right)$ of $T_{p}(E)$ over \boldsymbol{Z}_{p}. If σ is an element of G, then there exists a unique element $\pi_{p}(\boldsymbol{\sigma})$ of $G L_{2}\left(\boldsymbol{Z}_{p}\right)$ such that

$$
\left(\sigma \xi_{0}, \sigma \xi_{1}\right)=\left(\xi_{0}, \xi_{1}\right) \pi_{p}(\sigma) .
$$

The mapping $\pi \rightarrow \pi_{p}(\sigma)$, which will be denoted by π_{p}, is a continuous representation $G \rightarrow G L_{2}\left(\boldsymbol{Z}_{p}\right)$.

Serre [7] proved that if E has no complex multiplication, then the image group $\pi_{p}(G)$ is an open subgroup of $G L_{2}\left(\boldsymbol{Z}_{p}\right)$. He also states that if E is semistable and $p \geqq 11$, then the Galois $\operatorname{group} \operatorname{Gal}\left(\boldsymbol{Q}\left(E_{p}\right) / \boldsymbol{Q}\right)$ is isomorphic to $G L_{2}(\boldsymbol{Z} / p \boldsymbol{Z})$ (Theorem 5 in [8]), and therefore $\pi_{p}(G)=G L_{2}\left(\boldsymbol{Z}_{p}\right)$. Put

$$
H^{(n)}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L_{2}\left(Z_{p}\right) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod p^{n}\right.\right\} .
$$

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540029), Ministry of Education.

