The 2-adic representations attached to elliptic curves defined over Q whose points of order 2 are all Q-rational

By Kumiko NISHIOKA

(Received July 10, 1980) (Revised Dec. 3, 1981)

0. Introduction.

Let E be an elliptic curve defined over the field Q of rational numbers. Throughout the paper, an elliptic curve defined over Q means an abelian variety of dimension one which is defined over Q. Let G be the Galois group of extension \overline{Q}/Q , where \overline{Q} denotes an algebraic closure of Q. Then the group G, with the Krull topology, is compact and totally disconnected. For each positive integer m, we denote by E_m the kernel of multiplication by m. Let p be a prime number. With the multiplication by $p: E_{p^{n+1}} \rightarrow E_{p^n}$, the sequence $\{E_{p^n}\}_{n=1,2,\cdots}$ forms a projective system. The Tate module $T_p(E)$ is defined as follows:

$$T_p(E) = \operatorname{projlim}_{n \to \infty} E_{p^n}$$
.

The module $T_p(E)$ is a free \mathbb{Z}_p -module of rank 2, where \mathbb{Z}_p denotes a *p*-adic completion of the ring \mathbb{Z} of rational integers, and G acts on $T_p(E)$. Fix a base (ξ_0, ξ_1) of $T_p(E)$ over \mathbb{Z}_p . If σ is an element of G, then there exists a unique element $\pi_p(\sigma)$ of $GL_2(\mathbb{Z}_p)$ such that

$$(\sigma\xi_0, \sigma\xi_1) = (\xi_0, \xi_1)\pi_p(\sigma).$$

The mapping $\pi \to \pi_p(\sigma)$, which will be denoted by π_p , is a continuous representation $G \to GL_2(\mathbb{Z}_p)$.

Serre [7] proved that if E has no complex multiplication, then the image group $\pi_p(G)$ is an open subgroup of $GL_2(\mathbb{Z}_p)$. He also states that if E is semistable and $p \ge 11$, then the Galois group $\operatorname{Gal}(\mathbb{Q}(E_p)/\mathbb{Q})$ is isomorphic to $GL_2(\mathbb{Z}/p\mathbb{Z})$ (Theorem 5 in [8]), and therefore $\pi_p(G) = GL_2(\mathbb{Z}_p)$. Put

$$H^{(n)} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}_p) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod p^n \right\}.$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 57540029), Ministry of Education.