On some asymptotic properties of systems of entire functions of smooth growth

By Nobushige TODA

(Received Oct. 27, 1981)

1. Introduction.

Let $f=(f_0, f_1, \dots, f_n)$ $(n \ge 1)$ be a transcendental system in $|z| < \infty$. That is to say, f_0, f_1, \dots, f_n are entire functions without common zero and the characteristic function of f defined by H. Cartan ([3]):

$$T(r, f) = \frac{1}{2\pi} \int_0^{2\pi} U(re^{i\theta}) d\theta - U(0)$$
,

where

$$U(re^{i\theta}) = \max_{0 \le j \le n} \log |f_j(re^{i\theta})|,$$

satisfies the condition

$$\lim_{r\to\infty}\frac{T(r,f)}{\log r}=\infty.$$

Let X be a set of linear combinations ($\neq 0$) of f_0 , f_1 , ..., f_n with coefficients in C in general position; that is, for any n+1 elements

$$a_{0i}f_0 + a_{1i}f_1 + \cdots + a_{ni}f_n$$
 $(j=1, \dots, n+1)$

in X, n+1 vectors $(a_{0j}, a_{1j}, \dots, a_{nj})$ are linearly independent.

In this paper, we shall give some necessary or sufficient conditions for f to satisfy

$$(1) T(r, f) \sim T(2r, f),$$

where " $A(r) \sim B(r)$ " means $\lim_{r \to \infty} A(r)/B(r) = 1$, and discuss the relations between the Nevanlinna deficiency of F in X and the asymptotic behaviour of f satisfying (1).

We use the standard notation of the Nevanlinna theory (see [5]).

2. Cases of meromorphic functions; some lemmas and problems.

In this section, we shall pick up important results concerning transcendental meromorphic functions g in $|z| < \infty$ which satisfy