A characterization of Azumaya coalgebras over a commutative ring

By Kozo Sugano

(Received March 30, 1981)
(Revised July 17, 1981)

§ 1. Introduction.

Throughout this paper R is a commutative ring with 1 , and (C, Δ, ε) is a coalgebra over R, where Δ is the comultiplication of C and ε is the counit of C. As usual we denote $\Delta(c)=\Sigma c_{(1)} \otimes c_{(2)}$ for each $c \in C$. Furthermore we will set $C^{*}=\operatorname{Hom}_{R}(C, R)$, and for each $c^{*} \in C^{*}$ and $c \in C$, we denote by $\left\langle c^{*}, c\right\rangle$ the element of R to which c is mapped by c^{*} in stead of $c^{*}(c)$. As is well known C^{*} is an R-algebra whose multiplication is defined by $\left\langle c^{*} \cdot d^{*}, c\right\rangle=\Sigma\left\langle c^{*}, c_{(1)}\right\rangle$ $\left\langle d^{*}, c_{(2)}\right\rangle$ (namely, $\left(c^{*} \cdot d^{*}\right)(c)=\Sigma c^{*}\left(c_{(1)}\right) d^{*}\left(c_{(2)}\right)$ by the ordinary description of homomorphisms) for any $c^{*}, d^{*} \in C^{*}$ and $c \in C$. On the other hand, C is a twosided C^{*}-module by $c^{*} \cdot c=\Sigma c_{(1)}\left\langle c^{*}, c_{(2)}\right\rangle$ and $c \cdot c^{*}=\Sigma\left\langle c^{*}, c_{(1)}\right\rangle c_{(2)}$ for any $c^{*} \in C^{*}$ and $c \in C$. Then it is easily seen that the $C^{*}-C^{*}$-module structure of $\operatorname{Hom}_{R}(C, R)$ induced from the $C^{*}-C^{*}$-module structure of C is the same as that induced from the ring structure of $\operatorname{Hom}_{R}(C, R)=C^{*}$. In what follows throughout, all \otimes will be \otimes_{R} and Hom will mean Hom_{R}.

In this paper we will show that in the case where C is R-finitely generated projective and faithful, C^{*} is an R-Azumaya algebra if and only if there exist C^{*}-C ${ }^{*}$-isomorphisms Ψ of $C \otimes C$ to $C \otimes_{C} \cdot C \otimes C$ and μ of $C^{*} \otimes I$ to C, where $I=$ $\left\{c \in C \mid \Sigma c_{(1)} \otimes c_{(2)}=\Sigma c_{(2)} \otimes c_{(1)}\right\}$, such that $\Psi(c \otimes d)=\Sigma c \otimes d_{(1)} \otimes d_{(2)}$ and $\mu\left(c^{*} \otimes a\right)$ $=c^{*} \cdot a\left(=a \cdot c^{*}\right)$ for $c, d \in C, \cdot c^{*} \in C^{*}$ and $a \in I$
§2. Let A, B and S be (not necessarily commutative) rings with identities. We denote as usual ${ }_{A} M_{B}$ (resp. $M_{A \cdot B}$) in the case where M is a left A-module as well as a right B-module (resp. a right A-module as well as a right B module) such that ($a m$) $b=a(m b)$ (resp. ($m a) b=(m b) a$) for all $m \in M, a \in A$ and $b \in B$. For any ${ }_{A} P_{A}$ and ${ }_{A} M_{B},{ }_{A} N_{B}$, we will set, respectively,

$$
\begin{aligned}
& P^{A}=\{\hat{x} \in P \mid a x=x a \text { for all } a \in A\}, \\
& \operatorname{Hom}\left({ }_{A} M_{B},{ }_{A} N_{B}\right)=\{A \text {-B-homomorphism of } M \text { to } N\} .
\end{aligned}
$$

Then it is clear that $\operatorname{Hom}\left({ }_{A} M_{B},{ }_{A} N_{B}\right)=\left[\operatorname{Hom}\left(M_{B}, N_{B}\right)\right]^{A}=\left[\operatorname{Hom}\left({ }_{A} M,{ }_{A} N\right)\right]^{B}$. The

