A characterization of Azumaya coalgebras over a commutative ring

By Kozo SUGANO

(Received March 30, 1981) (Revised July 17, 1981)

§1. Introduction.

Throughout this paper R is a commutative ring with 1, and (C, Δ, ε) is a coalgebra over R, where Δ is the comultiplication of C and ε is the counit of C. As usual we denote $\Delta(c) = \sum c_{(1)} \otimes c_{(2)}$ for each $c \in C$. Furthermore we will set $C^* = \operatorname{Hom}_R(C, R)$, and for each $c^* \in C^*$ and $c \in C$, we denote by $\langle c^*, c \rangle$ the element of R to which c is mapped by c^* in stead of $c^*(c)$. As is well known C^* is an R-algebra whose multiplication is defined by $\langle c^* \cdot d^*, c \rangle = \sum \langle c^*, c_{(1)} \rangle \langle d^*, c_{(2)} \rangle$ (namely, $(c^* \cdot d^*)(c) = \sum c^*(c_{(1)})d^*(c_{(2)})$ by the ordinary description of homomorphisms) for any c^* , $d^* \in C^*$ and $c \in C$. On the other hand, C is a two-sided C*-module by $c^* \cdot c = \sum c_{(1)} \langle c^*, c_{(2)} \rangle$ and $c \cdot c^* = \sum \langle c^*, c_{(1)} \rangle c_{(2)}$ for any $c^* \in C^*$ and $c \in C$. Then it is easily seen that the C*-C*-module structure of $\operatorname{Hom}_R(C, R)$ induced from the C*-C*-module structure of C is the same as that induced from the ring structure of $\operatorname{Hom}_R(C, R) = C^*$. In what follows throughout, all \otimes will be \otimes_R and Hom will mean Hom_R .

In this paper we will show that in the case where C is R-finitely generated projective and faithful, C* is an R-Azumaya algebra if and only if there exist C*-C*-isomorphisms Ψ of $C \otimes C$ to $C \otimes_{C^*} C \otimes C$ and μ of $C^* \otimes I$ to C, where $I = \{c \in C \mid \sum c_{(1)} \otimes c_{(2)} = \sum c_{(2)} \otimes c_{(1)}\}$, such that $\Psi(c \otimes d) = \sum c \otimes d_{(1)} \otimes d_{(2)}$ and $\mu(c^* \otimes a) = c^* \cdot a \ (=a \cdot c^*)$ for $c, d \in C, c^* \in C^*$ and $a \in I$

§2. Let A, B and S be (not necessarily commutative) rings with identities. We denote as usual $_{A}M_{B}$ (resp. $M_{A\cdot B}$) in the case where M is a left A-module as well as a right B-module (resp. a right A-module as well as a right Bmodule) such that (am)b=a(mb) (resp. (ma)b=(mb)a) for all $m\in M$, $a\in A$ and $b\in B$. For any $_{A}P_{A}$ and $_{A}M_{B}$, $_{A}N_{B}$, we will set, respectively,

 $P^A = \{x \in P \mid ax = xa \text{ for all } a \in A\},\$

Hom($_{A}M_{B}$, $_{A}N_{B}$) = {A-B-homomorphism of M to N }.

Then it is clear that $\operatorname{Hom}({}_{A}M_{B}, {}_{A}N_{B}) = [\operatorname{Hom}(M_{B}, N_{B})]^{A} = [\operatorname{Hom}({}_{A}M, {}_{A}N)]^{B}$. The