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Introduction.

This paper is concerned with the stability theory for several properties of
linear operators in Banach and Hilbert spaces.

Let $A$ be a linear operator with domain $D(A)$ and range $R(A)$ in a Banach
space $X$. Let $B$ be a linear operator in $X$, with $D(B)\supset D(A)$ . Assume that

(i) there are constants $a_{0},$ $b_{0}\geqq 0$ such that for all $u\in D(A)$ ,

(0.1) $\Vert Bu\Vert\leqq a_{0}\Vert u\Vert+b_{0}\Vert$ Au $\Vert$ .
In the perturbation theory it is frequently assumed that

(ii) $b_{0}$ is less than one.
In fact, under these conditions the following three facts, for example, are well
known:

(P1) $A+B$ is closed if and only if $A$ is closed;
(P2) if $A$ is m-accretive, with $D(A)$ dense in $X$, and $B$ is accretive then

$A+B$ is also m-accretive, $i$ . $e.$ , if $-A$ is the generator of a contraction semigroup
on $X$ then so is $-(A+B)$ , too;

(P3) if $A$ is selfadjoint and $B$ is symmetric then $A+B$ is also selfadjoint
(when $X$ is a Hilbert space).

The main purpose of this paper is to show that condition (ii) can be re-
placed by (indeed generalized to)

(iii) for every $u\in D(A)$ there is $g\in F(Au)$ such that

${\rm Re}(Bu, g)\geqq-c\Vert u\Vert^{2}-a\Vert$ Au $\Vert\Vert u\Vert-b\Vert Au\Vert^{2}$ ,

where $a,,,$ $b(b<1)$ and $c$ are nonnegative constants.
The appearance of the duality map $F$ on $X$ to its adjoint $x*$ may be

somewhat unfamiliar in the theory of linear operators. But, we need only
elementary properties of the duality map. In this connection, we denote by
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