Invariant subspaces of unitary operators

By Takahiko NAKAZI

(Received Aug. 25, 1980)
(Revised April 13, 1981)

§ 1. Introduction.

Let \mathscr{H} be a separable, complex Hilbert space and U a unitary operator on \mathfrak{A}. If

$$
\mathscr{A}=M(C)=\cdots \oplus U^{*} C \oplus C \oplus U C \oplus U^{2} C \oplus \cdots
$$

for some closed subspace C of \mathscr{H}, then U is said to be a bilateral shift of multiplicity n, where U^{*} is the adjoint operator of U and n is the dimension of C. When U is an isometry with $\mathscr{H}=M_{+}(C)=C \oplus U C \oplus U^{2} C \oplus \cdots$, then U is said to be a unilateral shift of multiplicity n. The study of invariant subspaces of shifts was begun by Beurling [1]. He characterized all invariant subspaces of unilateral shifts of multiplicity one. Lax [8] extended Beurling's result to unilateral shifts of finite multiplicity. Helson-Lowdenslager [6] and Halmos [5] characterized all invariant subspaces of bilateral shifts of arbitrary multiplicity. We are going to study invariant subspaces of unitary operators in order to generalize previous results concerning bilateral shifts.

A unitary operator U on \mathscr{H} is said to be pure if every invariant subspace for U is reducing. Every unitary operator U can be written as the direct sum of a bilateral shift and a pure unitary operator [2; pp. 62-63]. Namely, there exists a closed subspace C of \mathscr{G} such that $U^{n} C, n=0, \pm 1, \pm 2, \cdots$ are mutually orthogonal and the restriction of U to $\mathscr{H} \ominus M(C)$ is pure. Setting $\mathcal{K}=\mathscr{H} \ominus M(C)$, we get a decomposition

$$
\begin{equation*}
\mathscr{H}=M(C) \oplus \mathcal{K}, \quad U=S \oplus V, \tag{*}
\end{equation*}
$$

so that $S=U \mid M(C)$ is a bilateral shift and $V \mid \mathcal{K}$ is pure. It is known that such decomposition is not necessarily unique. In fact, any bilateral shift of infinite multiplicity allows infinitely many non-isomorphic decompositions of the form (*). We call a decomposition $\mathscr{H}=M\left(C_{0}\right) \oplus \mathcal{K}_{0}$ of the form (*) maximal if we have $M\left(C^{\prime}\right)=M\left(C_{0}\right)$ for any decomposition $\mathscr{H}=M\left(C^{\prime}\right) \oplus \mathcal{K}^{\prime}$ of the form (*) with

[^0]
[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 56540052), Ministry of Education.

