Complex crystallographic groups II

By Jyoichi Kaneko, Syoshi Tokunaga and Masaaki Yoshida*)

(Received April 15, 1981)

§ 0. Introduction.

Let $\boldsymbol{E}(n)$ be the complex motion group acting on the n-dimensional complex euclidean space $X \cong \boldsymbol{C}^{n}$. A complex crystallographic group is, by definition, a discrete subgroup of $\boldsymbol{E}(n)$ with compact quotient. In a previous paper [6], we studied general properties of the quotient varieties and determined all the two dimensional crystallographic reflection groups.

In this paper, we treat two dimensional complex crystallographic group Γ such that the quotient variety $M=X / \Gamma$ is biholomorphic to the two dimensional projective space \boldsymbol{P}^{2}. We list up all such groups (Theorem 1). Generators and fundamental relations are obtained (Theorem 2). Let ϕ denote the natural mapping: $X \rightarrow M$. The coordinate representation of ϕ, the branching locus D and the ramification indices of ϕ on D are determined (Theorem 3). We explicitly give the representation $h: \pi_{1}(M-D) \rightarrow \Gamma$ and the kernel of h (Theorem 4).

§ 1. Notations and definitions.

The unitary group of size 2 is denoted by $U(2)$. For $A \in U(2)$ and $a \in \boldsymbol{C}^{2}$, $(A \mid a) \in \boldsymbol{E}(2)$ denotes the transformation: $x \rightarrow A x+a$. For a two dimensional complex crystallographic group Γ,
and

$$
L:=\{a ;(1 \mid a) \in \Gamma\}
$$

and

$$
G:=\{A ;(A \mid a) \in \Gamma\}
$$

are called the lattice and the point group of Γ, respectively. If Γ has the representation $\{(A \mid a) ; A \in G, a \in L\}$, then we call Γ the semidirect product $G \ltimes L$ of the lattice and the point group.

DEfinition. Imprimitive reflection group $G(m, p, 2) \subset U(2)$ is the group generated by

$$
\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right),\left(\begin{array}{ll}
\theta^{-1} & \theta
\end{array}\right) \text { and }\left(\begin{array}{cc}
\theta^{p} & \\
& 1
\end{array}\right), \quad \theta=\exp \frac{2 \pi \sqrt{ }-1}{m}
$$

Definition. An element $g \in \boldsymbol{E}(2)$ is called a reflection if g is of finite order, $g \neq$ identity and keeps a line $H(g) \subset X$ pointwise fixed.

[^0]
[^0]: *) This author was partially supported by Grant-in-Aid for Scientific Research (No. 480130030787), Ministry of Education.

