On the units of an algebraic number field

By Katsuya MIYAKE

(Received Jan. 26, 1981)

In this paper, we extend the transcendental method of Ax[1], to apply the result of Brumer [2] to show Leopoldt's conjecture for certain non-abelian extensions of imaginary quadratic number fields (Theorem 4 in § 6).

§ 1. Preliminaries.

Let F be a finite algebraic extension of rational number field Q, and O_F the maximal order of F. For a prime divisor $\mathfrak p$ of F, let $F_{\mathfrak p}$ be the $\mathfrak p$ -adic completion of F, and $O_{\mathfrak p}$ the closure of O_F in $F_{\mathfrak p}$.

Let p be a prime number, and denote the p-adic completion of Q by Q_p . The closure of the ring of integers Z in Q_p is denoted by Z_p . Then $F \otimes_Q Q_p$ is naturally isomorphic to the direct sum $\bigoplus_{\mathfrak{p} \mid p} F_{\mathfrak{p}}$.

We denote the multiplicative groups of the invertible elements of F, $F_{\mathfrak{p}}$, $O_{\mathfrak{p}}$, etc. by F^{\times} , $F_{\mathfrak{p}}^{\times}$, $O_{\mathfrak{p}}^{\times}$, etc. Especially, $(\bigoplus_{\mathfrak{p}\mid p}F_{\mathfrak{p}})^{\times}$ is the direct product $\prod_{\mathfrak{p}\mid p}F_{\mathfrak{p}}^{\times}$. Let $W_{\mathfrak{p}}$ be the group of $(N_{F/Q}(\mathfrak{p})-1)$ -th roots of 1 in $F_{\mathfrak{p}}$. Then $O_{\mathfrak{p}}^{\times}=W_{\mathfrak{p}}\cdot(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$. Put $U_0=\prod_{\mathfrak{p}\mid p}O_{\mathfrak{p}}^{\times}$ and $U_1=\prod_{\mathfrak{p}\mid p}(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$. The action of Z on the compact abelian group U_1 as powers induces the action of Z_p on U_1 naturally. As a Z_p -module in this way, the essential rank of U_1 over Z_p is equal to $[F\colon Q]$, the degree of F over Q. In other words, the dimension of the vector space $U^{(p)}=U_1\otimes_Z Q=U_1\otimes_Z Q$ over Q_p is $[F\colon Q]$. Note that $U_0\otimes_Z Q=U_1\otimes_Z Q=U^{(p)}$.

Let V_0 be a finitely generated subgroup of $F^{\times} \cap U_0$. Here F^{\times} is considered to be diagonally imbedded in $\prod_{\mathfrak{p} \mid p} F_{\mathfrak{p}}^{\times}$. Put $V = V_0 \otimes_{\mathbf{Z}} \mathbf{Q}$, and $V^{(p)} = V \otimes_{\mathbf{Q}} \mathbf{Q}_{\mathfrak{p}}$. Then the inclusion map $V_0 \hookrightarrow U_0$ induces a \mathbf{Q}_p -linear map $\boldsymbol{\Phi}_p \colon V^{(p)} \to U^{(p)}$. We are interested in the dimension over \mathbf{Q}_p of the subspace $\boldsymbol{\Phi}_p(V^{(p)})$ of $U^{(p)}$. (Leopoldt's conjecture is equivalent to the injectivity of $\boldsymbol{\Phi}_p$ for $V_0 = O_F^{\times} =$ the group of the units of F.) Note that

$$\dim_{\boldsymbol{Q}_p}\!V^{\scriptscriptstyle(p)}\!=\!\dim_{\boldsymbol{Q}}\!V\!=\!\operatorname{ess.rank}_{\boldsymbol{Z}}\!V_{\scriptscriptstyle{0}}$$
 ,

and that $\Phi_p|_V: V \rightarrow U^{(p)}$ is injective.

We use additive notation for the vector spaces V, $V^{(p)}$, and $U^{(p)}$.