On the units of an algebraic number field

By Katsuya Miyake

(Received Jan. 26, 1981)

In this paper, we extend the transcendental method of $\mathrm{Ax}[1]$, to apply the result of Brumer [2] to show Leopoldt's conjecture for certain non-abelian extensions of imaginary quadratic number fields (Theorem 4 in $\S 6$).

§ 1. Preliminaries.

Let F be a finite algebraic extension of rational number field \boldsymbol{Q}, and O_{F} the maximal order of F. For a prime divisor \mathfrak{p} of F, let $F_{\mathfrak{p}}$ be the \mathfrak{p}-adic completion of F, and O_{p} the closure of O_{F} in F_{p}.

Let p be a prime number, and denote the p-adic completion of \boldsymbol{Q} by \boldsymbol{Q}_{p}. The closure of the ring of integers \boldsymbol{Z} in \boldsymbol{Q}_{p} is denoted by \boldsymbol{Z}_{p}. Then $F \otimes_{\boldsymbol{Q}} \boldsymbol{Q}_{p}$ is naturally isomorphic to the direct sum $\underset{p \nmid p}{\oplus} F_{p}$.

We denote the multiplicative groups of the invertible elements of F, F_{p}, O_{p}, etc. by $F^{\times}, F_{p}^{\times}, O_{p}^{\times}$, etc. Especially, $\left(\underset{p \mid p}{ } F_{p}\right)^{\times}$is the direct product $\prod_{p \mid p} F_{p}^{\times}$. Let W_{p} be the group of $\left(N_{F / Q}(\mathfrak{p})-1\right)$-th roots of 1 in F_{p}. Then $O_{\mathfrak{p}}=W_{p} \cdot\left(1+\mathfrak{p} \cdot O_{p}\right)$. Put $U_{0}=\prod_{p \not p} O_{\mathbb{p}}^{\times}$and $U_{1}=\prod_{p \mid p}\left(1+\mathfrak{p} \cdot O_{\mathfrak{p}}\right)$. The action of \boldsymbol{Z} on the compact abelian group U_{1} as powers induces the action of Z_{p} on U_{1} naturally. As a \boldsymbol{Z}_{p}-module in this way, the essential rank of U_{1} over \boldsymbol{Z}_{p} is equal to $[F: \boldsymbol{Q}]$, the degree of F over \boldsymbol{Q}. In other words, the dimension of the vector space $U^{(p)}=U_{1} \otimes_{\mathbf{z}} \boldsymbol{Q}=U_{1} \otimes_{z_{p}} \boldsymbol{Q}_{p}$ over \boldsymbol{Q}_{p} is $[F: \boldsymbol{Q}]$. Note that $U_{0} \otimes_{\mathbf{z}} \boldsymbol{Q}=U_{1} \otimes_{\mathbf{z}} \boldsymbol{Q}=U^{(p)}$.

Let V_{0} be a finitely generated subgroup of $F^{\times} \cap U_{0}$. Here F^{\times}is considered to be diagonally imbedded in $\prod_{p \mid p} F_{p}^{\times}$. Put $V=V_{0} \otimes_{z} \boldsymbol{Q}$, and $V^{(p)}=V \otimes_{\boldsymbol{Q}} \boldsymbol{Q}_{p}$. Then the inclusion map $V_{0} \subset U_{0}$ induces a \boldsymbol{Q}_{p}-linear map $\Phi_{p}: V^{(p)} \rightarrow U^{(p)}$. We are interested in the dimension over \boldsymbol{Q}_{p} of the subspace $\Phi_{p}\left(V^{(p)}\right)$ of $U^{(p)}$. (Leopoldt's conjecture is equivalent to the injectivity of Φ_{p} for $V_{0}=O_{F}^{\times}=$the group of the units of F.) Note that

$$
\operatorname{dim}_{\boldsymbol{Q}_{p}} V^{(p)}=\operatorname{dim}_{\boldsymbol{Q}} V=\text { ess. } \operatorname{rank}_{\boldsymbol{z}} V_{0},
$$

and that $\left.\Phi_{p}\right|_{V}: V \rightarrow U^{(p)}$ is injective.
We use additive notation for the vector spaces $V, V^{(p)}$, and $U^{(p)}$.

