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On the units of an algebraic number field
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In this paper, we extend the transcendental method of Ax [1], to apply the
result of Brumer [2] to show Leopoldt’s conjecture for certain non-abelian ex-
tensions of imaginary quadratic number fields (Theorem 4 in \S 6).

\S 1. Preliminaries.

Let $F$ be a finite algebraic extension of rational number field $Q$ , and $O_{F}$ the
maximal order of $F$. For a prime divisor $\mathfrak{p}$ of $F$, let $F_{\mathfrak{p}}$ be the $\mathfrak{p}$-adic comple-
tion of $F$, and $O_{\mathfrak{p}}$ the closure of $O_{F}$ in $F_{\mathfrak{p}}$ .

Let $p$ be a prime number, and denote the $P$ -adic completion of $Q$ by $Q_{p}$ .
The closure of the ring of integers $Z$ in $Q_{p}$ is denoted by $Z_{p}$ . Then $F\otimes_{Q}Q_{p}$

is naturally isomorphic to the direct sum $\bigoplus_{\mathfrak{p}1p}F_{\mathfrak{p}}$ .

We denote the multiplicative groups of the invertible elements of $F,$ $F_{\mathfrak{p}},$ $O_{\mathfrak{p}}$ ,
etc. by $F^{\times},$ $F_{p}^{\times},$ $O_{\rho}^{\times}$ , etc. Especially, $(\bigoplus_{\mathfrak{p}1p}F_{\mathfrak{p}})^{\times}$ is the direct product $\prod_{\mathfrak{p}1p}F_{\mathfrak{p}}^{\times}$ . Let $W_{\mathfrak{p}}$

be the group of $(N_{F/Q}(\mathfrak{p})-1)$-th roots of 1 in $F_{\mathfrak{p}}$ . Then $O_{\mathfrak{p}}^{\times}=W_{\mathfrak{p}}\cdot(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$ . Put
$U_{0}=\prod_{\mathfrak{p}1p}O_{\mathfrak{p}}^{\times}$ and $U_{1}=\prod_{\mathfrak{p}1p}(1+\mathfrak{p}\cdot O_{\mathfrak{p}})$ . The action of $Z$ on the compact abelian group

$U_{1}$ as powers induces the action of $Z_{p}$ on $U_{1}$ naturally. As a $Z_{p}$-module in this
way, the essential rank of $U_{1}$ over $Z_{p}$ is equal to $[F:Q]$ , the degree of $F$ over
$Q$ . In other words, the dimension of the vector space $U^{(p)}=U_{1}\otimes_{Z}Q=U_{1}\otimes_{Z_{p}}Q_{p}$

over $Q_{p}$ is $[F:Q]$ . Note that $U_{0}\otimes_{Z}Q=U_{1}\otimes_{Z}Q=U^{(p)}$ .
Let $V_{0}$ be a finitely generated subgroup of $F^{\times}\cap U_{0}$ . Here $F^{x}$ is considered

to be diagonally imbedded in $\prod_{\mathfrak{p}1p}F_{p^{x}}$ . Put $V=V_{0}\otimes_{Z}Q$ , and $V^{(p)}=V\otimes_{Q}Q_{p}$ . Then

the inclusion map $V_{0}cU_{0}$ induces a $Q_{p}$-linear map $\Phi_{p}$ : $V^{(p)}\rightarrow U^{(p)}$ . We are in-
terested in the dimension over $Q_{p}$ of the subspace $\Phi_{p}(V^{(p)})$ of $U^{(p)}$ . (Leopoldt’s

conjecture is equivalent to the injectivity of $\Phi_{p}$ for $V_{0}=O_{F}^{x}=the$ group of the
units of $F.$) Note that

$\dim_{Q_{p}}V^{(p)}=\dim_{Q}V=ess$. $rank_{Z}V_{0}$ ,

and that $\Phi_{p}|_{V}$ : $V\rightarrow U^{(p)}$ is injective.
We use additive notation for the vector spaces $V,$ $V^{(p)}$ , and $U^{(p)}$ .


