On construction of Siegel modular forms of degree two

By Hisashi Kojima

(Received Oct. 15, 1980)

Introduction. Let κ be an odd positive integer, N a positive integer divisible by 4 , and χ a character modulo N. We denote by $\mathscr{S}_{\kappa}(N, \chi)$ the space of modular cusp forms of Neben-type χ and of weight $\kappa / 2$ with respect to $\Gamma_{0}(N)$ and denote by $T_{\kappa, \chi}^{N}\left(p^{2}\right)$ the Hecke operator defined on $\Im_{\kappa}(N, \chi)$. We denote by $S_{k}^{(2)}(L, \psi)$ the space of Siegel modular cusp forms of Neben-type ψ and of weight k with respect to $\Gamma_{0}^{(2)}(L)=\left\{\left.\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2, \boldsymbol{Z}) \right\rvert\, C \equiv 0(\bmod L)\right\}$. Let $T_{k, \phi}^{(2), L}(n)$ denote the Hecke operator on $S_{k}^{(2)}(L, \psi)$.

In this paper we discuss two problems. The first problem is a construction of Siegel modular forms of degree two from modular cusp forms of half integral weight. The second one is a construction of modular cusp forms of half integral weight from Siegel modular forms of degree two.

In $\S 1$ we show the existence of a linear mapping $\Psi_{k}^{\mu, \chi}: \Im_{2 k-1}(\tilde{M}, \chi) \rightarrow S_{k}^{(2)}(M, \tilde{\chi})$ where M and k are even positive integers, $\tilde{M}=1$.c.m. (4, M) and χ is a character modulo M. In $\S 2$, using the same method as in [3], we determine Fourier coefficients of $\Psi_{k}^{M}, \chi(f)$ at infinity. In $\S 3$ we study a relation between Andrianov's zeta function associated with $\Psi_{k}^{M, \chi}(f)$ and Shimura's one associated with f, where $f \in \Xi_{2 k-1}(\tilde{M}, \chi)$. In [3], we have treated the case $M=2$.

In $\S 4$ we give a linear mapping $I_{k}(L, \psi): \mathscr{M}_{k}^{(2)}(L, \psi) \rightarrow \Im_{2 k-1}(\tilde{L}, \psi)$ which is a generalization of the mapping given in [4] and [5], where $4 \nmid L, \widetilde{L}=1$. c. m. (4, L) and $\mathscr{M}_{k}^{(2)}(L, \psi)$ denotes the Maaß's space of $S_{k}^{(2)}(L, \psi)$.

In the last section we present an application of the results in $\S 1, \S 2, \S 3$ and $\S 4$. With some assumption on M we show the existence of an isomorphic mapping $\tilde{\Psi}_{k}^{M, \chi}$ of $\widetilde{ভ}_{2 k-1}(\tilde{M}, \chi)$ onto $\widetilde{M}_{k}^{(2)}(M, \chi)$ with the following properties: if $f \in \widetilde{ভ}_{2 k-1}(\tilde{M}, \chi)$ satisfies $T_{2 k-1, \chi}^{\tilde{H}}\left(p^{2}\right) f=\omega_{p} f$ for every prime p, then $\tilde{\Psi}_{k}^{M, \chi}(f)$ satisfies $T_{k, x^{2}}^{(2), M}(n)\left(\tilde{\Psi}_{k}^{M}, \chi(f)\right)=\tilde{\lambda}(n)\left(\tilde{\Psi}_{k}^{M, x}(f)\right)$ for every positive integer n and moreover,

$$
\begin{aligned}
& L\left(2 s-2 k+4, \chi^{2}\right) \sum_{n=1}^{\infty} \tilde{\lambda}(n) n^{-s} \\
& =L(s-k+1, \chi) L(s-k+2, \chi) \prod_{p}\left(1-\omega_{p} p^{-s}+\chi(p)^{2} p^{2 k-3-2 s}\right)^{-1},
\end{aligned}
$$

