On construction of Siegel modular forms of degree two

By Hisashi KOJIMA

(Received Oct. 15, 1980)

Introduction. Let κ be an odd positive integer, N a positive integer divisible by 4, and χ a character modulo N. We denote by $\mathfrak{S}_{\kappa}(N,\chi)$ the space of modular cusp forms of Neben-type χ and of weight $\kappa/2$ with respect to $\Gamma_0(N)$ and denote by $T_{\kappa,\chi}^N(p^2)$ the Hecke operator defined on $\mathfrak{S}_{\kappa}(N,\chi)$. We denote by $S_{\kappa}^{(2)}(L,\phi)$ the space of Siegel modular cusp forms of Neben-type ϕ and of weight k with

respect to
$$\Gamma_0^{(2)}(L) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2, \mathbf{Z}) \mid C \equiv 0 \pmod{L} \right\}$$
. Let $T_{k,\psi}^{(2)}{}^L(n)$ denote the Hecke operator on $S_k^{(2)}(L, \phi)$.

In this paper we discuss two problems. The first problem is a construction of Siegel modular forms of degree two from modular cusp forms of half integral weight. The second one is a construction of modular cusp forms of half integral weight from Siegel modular forms of degree two.

In §1 we show the existence of a linear mapping $\Psi_k^{M,\chi}: \mathfrak{S}_{2k-1}(\widetilde{M},\chi) \to S_k^{(2)}(M,\overline{\chi})$ where M and k are even positive integers, $\widetilde{M}=1$.c.m. (4,M) and χ is a character modulo M. In §2, using the same method as in [3], we determine Fourier coefficients of $\Psi_k^{M,\chi}(f)$ at infinity. In §3 we study a relation between Andrianov's zeta function associated with $\Psi_k^{M,\chi}(f)$ and Shimura's one associated with f, where $f \in \mathfrak{S}_{2k-1}(\widetilde{M},\chi)$. In [3], we have treated the case M=2.

In § 4 we give a linear mapping $I_k(L, \phi) : \mathcal{M}_k^{(2)}(L, \phi) \to \mathfrak{S}_{2k-1}(\widetilde{L}, \phi)$ which is a generalization of the mapping given in [4] and [5], where $4 \not\mid L$, $\widetilde{L} = 1$. c. m. (4, L) and $\mathcal{M}_k^{(2)}(L, \phi)$ denotes the MaaB's space of $S_k^{(2)}(L, \phi)$.

In the last section we present an application of the results in § 1, § 2, § 3 and § 4. With some assumption on M we show the existence of an isomorphic mapping $\widetilde{\Psi}_k^{M,\chi}$ of $\widetilde{\mathfrak{S}}_{2k-1}(\widetilde{M},\chi)$ onto $\widetilde{\mathcal{M}}_k^{(2)}(M,\chi)$ with the following properties: if $f \in \widetilde{\mathfrak{S}}_{2k-1}(\widetilde{M},\chi)$ satisfies $T_{2k-1,\chi}^{M}(p^2)f = \omega_p f$ for every prime p, then $\widetilde{\Psi}_k^{M,\chi}(f)$ satisfies $T_{k,\chi}^{(2),M}(n)(\widetilde{\Psi}_k^{M,\chi}(f)) = \widetilde{\lambda}(n)(\widetilde{\Psi}_k^{M,\chi}(f))$ for every positive integer n and moreover,

$$\begin{split} &L(2s-2k+4,\,\chi^2)\,\sum_{n=1}^{\infty}\,\tilde{\lambda}(n)n^{-s}\\ &=L(s-k+1,\,\chi)L(s-k+2,\,\chi)\prod_{p}(1-\omega_p\,p^{-s}+\chi(p)^2p^{2\,k-3-2s})^{-1}, \end{split}$$