# The Schur index over the 2 -adic field 

By Toshihiko Yamada

(Received Sept. 22, 1980)

Let $k$ be a field of characteristic 0 and let $B$ be a cyclotomic algebra over $k$; that is, a crossed product ( $\alpha, k(\zeta) / k)$ in which $\zeta$ is a root of unity and $\alpha$ is a factor set on $\operatorname{Gal}(k(\zeta) / k)$ having only roots of unity as values. R. Brauer [1], [2] and E. Witt [5] reduced the problem of determining the Schur index of a character of a finite group to the case of handling the index of a cyclotomic algebra. And E. Witt [5] gave a formula of index of it which is central over the rational $p$-adic field $Q_{p}$. But in order to investigate the Schur index and the Schur group of an algebraic number field in detail, it is necessary to obtain the formula of index of a cyclotomic algebra which is central over an arbitrary extension $k$ of $Q_{p}$. And this was done by the author [6, Theorem 3] for an odd prime $p$ (for the application of the formula, see [3], [6], [9], [10]). In [9, Theorem 5.6] we also handled the remaining case $p=2$ and obtained a formula when the field $k$ and the factor set $\alpha$ satisfy some conditions.

The purpose of the paper is to settle the case $p=2$ completely. Namely, for any finite extension $k$ of the rational 2-adic field $Q_{2}$, we give the formula of index of any cyclotomic algebra ( $\alpha, k(\zeta) / k$ ) which is central over $k$ (Theorem 2). This will be achieved by embedding the field $k(\zeta)$ into a field $L$, where the residue class degree of $L$ is sufficiently large and a primitive $2^{m}$-th root of unity $\zeta_{2 m}$ belongs to $L$ with a sufficiently large integer $m$. Thus using this formula for the 2-adic field $Q_{2}$ and the formula for the $p$-adic field $Q_{p}(p \neq 2)$ in [6, Theorem 3], combined with the Brauer-Witt theorem [9, p. 31], we can determine the Schur index of a character of a finite group, over an algebraic number field.

Notation. For a finite extension field $K$ of the 2 -adic numbers $Q_{2}, \varepsilon_{2}(K)$ (resp. $\varepsilon^{\prime}(K)$ ) is the group of roots of unity whose orders are of 2-power order (resp. relatively prime to 2 ). For a natural number $m, \zeta_{m}$ is a primitive $m$-th root of unity. If $L$ is a Galois extension of $K$ then $\mathcal{G}(L / K)$ is the Galois group of $L$ over $K .|\mathcal{G}(L / K)|$ is the order of $\mathcal{G}(L / K) . \quad|\sigma|$ is the order of $\sigma \in \mathcal{G}(L / K)$. $\mathscr{T}(L / K)$ is the inertia group of the extension $L / K . e(L / K)=|\mathcal{T}(L / K)|=$ the ramification index of $L / K$. If $M$ is a Galois extension of $K$ such that $M \supset L \supset K$, then for $\sigma \in \mathcal{G}(M / K), \sigma \mid L$ is the restriction of $\sigma$ on $L$. If $\zeta$ is a root of unity any subfield of $Q_{2}(\zeta)$ is called a cyclotomic extension of $Q_{2}$.

