The Schur index over the 2-adic field

By Toshihiko YAMADA

(Received Sept. 22, 1980)

Let k be a field of characteristic 0 and let B be a cyclotomic algebra over k; that is, a crossed product $(\alpha, k(\zeta)/k)$ in which ζ is a root of unity and α is a factor set on $Gal(k(\zeta)/k)$ having only roots of unity as values. R. Brauer [1], [2] and E. Witt [5] reduced the problem of determining the Schur index of a character of a finite group to the case of handling the index of a cyclotomic algebra. And E. Witt [5] gave a formula of index of it which is central over the rational p-adic field Q_p . But in order to investigate the Schur index and the Schur group of an algebraic number field in detail, it is necessary to obtain the formula of index of a cyclotomic algebra which is central over an arbitrary extension k of Q_p . And this was done by the author [6, Theorem 3] for an odd prime p (for the application of the formula, see [3], [6], [9], [10]). In [9, Theorem 5.6] we also handled the remaining case p=2 and obtained a formula when the field k and the factor set α satisfy some conditions.

The purpose of the paper is to settle the case p=2 completely. Namely, for any finite extension k of the rational 2-adic field Q_2 , we give the formula of index of any cyclotomic algebra $(\alpha, k(\zeta)/k)$ which is central over k (Theorem 2). This will be achieved by embedding the field $k(\zeta)$ into a field L, where the residue class degree of L is sufficiently large and a primitive 2^m -th root of unity ζ_{2^m} belongs to L with a sufficiently large integer m. Thus using this formula for the 2-adic field Q_2 and the formula for the p-adic field Q_p ($p \neq 2$) in [6, Theorem 3], combined with the Brauer-Witt theorem [9, p. 31], we can determine the Schur index of a character of a finite group, over an algebraic number field.

NOTATION. For a finite extension field K of the 2-adic numbers Q_2 , $\varepsilon_2(K)$ (resp. $\varepsilon'(K)$) is the group of roots of unity whose orders are of 2-power order (resp. relatively prime to 2). For a natural number m, ζ_m is a primitive m-th root of unity. If L is a Galois extension of K then $\mathcal{Q}(L/K)$ is the Galois group of L over K. $|\mathcal{Q}(L/K)|$ is the order of $\mathcal{Q}(L/K)$. $|\sigma|$ is the order of $\sigma \in \mathcal{Q}(L/K)$. $|\sigma|$ is the order of $\sigma \in \mathcal{Q}(L/K)$. $|\sigma|$ is the inertia group of the extension L/K. $|\sigma|$ is the ramification index of L/K. If M is a Galois extension of K such that $M \supset L \supset K$, then for $\sigma \in \mathcal{Q}(M/K)$, $\sigma | L$ is the restriction of σ on L. If ζ is a root of unity any subfield of $Q_2(\zeta)$ is called a cyclotomic extension of Q_2 .