No explosion criteria for stochastic differential equations

By Kiyomasa NARITA

(Received July 26, 1979)
(Revised July 25, 1980)

§ 1. Introduction.

In this paper, the existence problem of global solutions of stochastic differential equations will be discussed.

First of all we introduce the notations and definitions. Let I denote the interval $0 \leqq t<\infty$ and R^{d} denote Euclidean d-space. For $x \in R^{d}$ and $y \in R^{d}$, let $\langle x, y\rangle$ be the inner product of x and y and let $|x|$ be the Euclidean norm of x. For a $d \times d$-matrix $M=\left(m_{i j}\right)$, define $|M|=\left(\sum_{i, j=1}^{d} m_{i j}^{2}\right)^{1 / 2}$. We shall denote by C_{2} the family of scalar functions defined on $I \times R^{d}$ which are twice continuously differentiable with respect to $x \in R^{d}$ and once with respect to $t \in I$. Let $(\Omega, \boldsymbol{F}, P)$ be a probability space with an increasing family $\left\{\boldsymbol{F}_{t} ; t \geqq 0\right\}$ of sub- σ-algebras of \boldsymbol{F} and let $w(t)=\left(w_{i}(t)\right), i=1, \cdots, d$, be a d-dimensional Brownian motion process adapted to $\boldsymbol{F}_{\boldsymbol{t}}$. Consider the stochastic differential equation

$$
\begin{equation*}
d X(t)=b(t, X(t)) d t+\sigma(t, X(t)) d w(t) \tag{1.1}
\end{equation*}
$$

where $b(t, x)=\left(b_{i}(t, x)\right), i=1, \cdots, d$, is a d-vector function and $\sigma(t, x)=\left(\sigma_{i j}(t, x)\right)$, $i, j=1, \cdots, d$, is a $d \times d$-matrix function, which are defined on $I \times R^{d}$ and Borel measurable with respect to the complete set of variables. Equation (1.1) is equivalent to the system of d equations

$$
\begin{equation*}
d X_{i}(t)=b_{i}(t, X(t)) d t+\sum_{j=1}^{d} \sigma_{i j}(t, X(t)) d w_{j}(t), \quad i=1, \cdots, d . \tag{1.1}
\end{equation*}
$$

Throughout this paper, we assume the following:
(1.2) $\quad b(t, x)$ and $\sigma(t, x)$ are continuous in (t, x), and for any $T>0, R>0$, there exists a constant $C_{T R}>0$ depending only on T and R such that

$$
|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)| \leqq C_{T R}|x-y|
$$

if $t \leqq T,|x| \leqq R$ and $|y| \leqq R$.
Then, for any natural number n, we can construct functions

