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\S 1. Introduction.

In this paper, the existence problem of global solutions of stochastic differ-
ential equations will be discussed.

First of all we introduce the notations and definitions. Let $I$ denote the
interval $ 0\leqq t<\infty$ and $R^{d}$ denote Euclidean d-space. For $x\in R^{d}$ and $y\in R^{d}$ , let
$\langle x, y\rangle$ be the inner product of $x$ and $y$ and let $|x|$ be the Euclidean norm of

$x$ . For a $d\times d$ -matrix $M=(m_{ij})$ , define $|M|=(\sum_{i.j=1}^{d}m_{ij}^{2})^{1/2}$ . We shall denote by

$C_{2}$ the family of scalar functions defined on $I\times R^{d}$ which are twice continuously
differentiable with respect to $x\in R^{d}$ and once with respect to $t\in I$ . Let $(\Omega, F, P)$

be a probability space with an increasing family $\{F_{t} ; t\geqq 0\}$ of $sub-\sigma$-algebras of
$F$ and let $w(t)=(w_{i}(t)),$ $i=1,$ $\cdots$ , $d$ , be a d-dimensional Brownian motion process
adapted to $F_{t}$ . Consider the stochastic differential equation

\langle 1.1) $dX(t)=b(t, X(t))dt+\sigma(t, X(t))dw\langle t)$ ,

where $b(t, x)=(b_{i}(t, x)),$ $i=1,$ $\cdots$ , $d$ , is a d-vector function and $\sigma(t, x)=(\sigma_{ij}(t, x))$ ,
$i,$ $j=1,$ $\cdots$ , $d$ , is a $d\times d$-matrix function, which are defined on $I\times R^{d}$ and Borel
measurable with respect to the complete set of variables. Equation (1.1) is
equivalent to the system of $d$ equations

\langle $1.1)^{\prime}$ $dX_{i}(t)=b_{i}(t, X(t))dt+\sum_{j=1}^{d}\sigma_{ij}(t, X(t))dw_{j}(t)$ , $i=1,$ $\cdots$ , $d$ .

Throughout this paper, we assume the following:

\langle 1.2) $b(t, x)$ and $\sigma(t, x)$ are continuous in $(t, x)$ , and for any $T>0,$ $R>0$,

there exists a constant $C_{TR}>0$ depending only on $T$ and $R$ such that

$|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)|\leqq C_{TR}|x-y|$

if $t\leqq T,$ $|x|\leqq R$ and $|y|\leqq R$ .
Then, for any natural number $n$ , we can construct functions


