J. Math. Soc. Japan Vol. 34, No. 1, 1982

Nonlinear ergodic theorems and weak convergence theorems

By Norimichi HIRANO

(Received Nov. 24, 1979) (Revised April 25, 1980)

Introduction.

In this paper we study the asymptotic behavior of nonexpansive mappings and of one parameter semigroups of nonexpansive mappings in Banach spaces. In [1], Baillon proved the first nonlinear ergodic theorem for nonexpansive mappings in Hilbert spaces. Reich [16] extended Baillon's result to uniformly convex Banach spaces which have Fréchet differentiable norms and Bruck [8] simplified the original argument of Reich. The weak convergence of trajectories of one parameter semigroups of nonexpansive mappings was studied by Baillon [2], Bruck [7], Pasy [16], Miyadera [12] and Reich [17]. In section 2, we give ergodic theorems for nonexpansive mappings in uniformly convex Banach spaces which satisfy Opial's condition. In section 3, we consider a necessary and sufficient condition for the weak convergence of trajectories of nonexpansive mappings and one parameter semigroups of nonexpansive mappings in Banach spaces.

1. Preliminaries and notations.

Let C be a closed convex subset of a Banach space E. A mapping $T: C \rightarrow E$ is said to be nonexpansive if

$$||Tx-Ty|| \leq ||x-y||$$
 for all $x, y \in C$.

A one parameter semigroup $S = \{S(t) : t \ge 0\}$ of nonexpansive mappings on C is a family of nonexpansive mappings of C into itself satisfying the following conditions

(1.1) $S(s+t)x = S(s)S(t)x \qquad t$	for	<i>s</i> , <i>t</i> ≧0	and	$x \in C$;
--------------------------------------	-----	------------------------	-----	-------------

(1.2) S(t)x	$-S(t)y \parallel \leq \parallel x - y \parallel \qquad 1$	for $t \ge 0$ and	$x, y \in C;$
------------------	--	-------------------	---------------

- (1.3) S(0)x = x for $x \in C$;
- (1.4) $\lim_{t \to t_0} S(t) x = S(t_0) x \qquad \text{for } t, t_0 \ge 0 \text{ and } x \in C.$