Isometric immersions into spheres

By Thomas HASANIS

(Received Dec. 17, 1979)

Recently ([1], [2]) new quantitative results concerning isometric immersions of complete Riemannian manifolds into euclidean space were obtained using a powerful theorem of Omori's [6]. Here we shall prove analogous results (theorem 1 and 2 below) concerning immersions into spheres. We begin with some auxiliary formulae for the sphere.

Let S_{λ}^{n+q} be the (n+q)-sphere of radius λ with the standard Riemannian metric induced by inclusion in \mathbb{R}^{n+q+1} . For a point P_0 of S_{λ}^{n+q} say the north pole, and a nonnegative number h, let $C(P_0, h)$ be the (n+q-1)-hypersphere of S_{λ}^{n+q} with constant mean curvature h centered at P_0 and lying in the northern hemisphere. Note that $C(P_0, 0)$ is a great (n+q-1)-hypersphere in S_{λ}^{n+q} , the "equator". Let $D(P_0, h)$ be the closed geodesic ball around P_0 with $\partial D(P_0, h) =$ $C(P_0, h)$. We take as origin of \mathbb{R}^{n+q+1} the point P_0 and let φ be the position vector of a point in $D(P_0, h)$. If O is the center of the sphere S_{λ}^{n+q} , we set $e_0 = \lambda^{-1} \overrightarrow{P_0 O}$. If we denote by N the outer unit normal of S_{λ}^{n+q} in \mathbb{R}^{n+q+1} , then by easy computations we obtain

(1)
$$d^{2}(P_{0}, C(P_{0}, h)) = 2\lambda^{2} [1 - h\lambda(1 + h^{2}\lambda^{2})^{-1/2}],$$

where $d(P_0, C(P_0, h))$ is the distance in R^{n+q+1} , and

(2)
$$\lambda^{-1}\langle N, \varphi \rangle = \frac{1}{2} \lambda^{-2} \langle \varphi, \varphi \rangle \leq \frac{1}{2} \lambda^{-2} d^2(P_0, C(P_0, h)) = 1 - h \lambda (1 + h^2 \lambda^2)^{-1/2},$$

where \langle , \rangle is the standard inner product in \mathbb{R}^{n+q+1} . Also, for all unit vectors e which are tangent to S_{λ}^{n+q} at any point of $D(P_0, h)$ we have

$$|\langle e, e_0 \rangle| \leq (1+h^2\lambda^2)^{-1/2}$$

The proofs of the results in this paper will consist in simple applications of by Omori's theorem A in [6] which we now formulate.

THEOREM A. Let M be a complete Riemannian manifold with sectional curvature bounded from below, consider a smooth function $f: M \to R$ with $\sup f < \infty$; then for any $\varepsilon > 0$ there exists a point $p \in M$, which depends on ε , where $\|\operatorname{grad} f\|$ $< \varepsilon$ and $\nabla^2 f(X, X) < \varepsilon$, for all unit vectors X of $T_p M$ (by $\nabla^2 f$ we denote the