On expansive homeomorphisms on manifolds

By Masaharu KOUNO

(Received Aug. 3, 1978) (Revised Nov. 27, 1979)

1. Introduction.

X will be a metric space with a metric d. A homeomorphism f of X onto itself is expansive if there exists a positive number C (called expansive constant) such that for each pair (x, y) of distinct points of X, there is an integer n for which $d(f^n(x), f^n(y)) > C$.

There is a question what manifolds admit such homeomorphisms. Several examples of existence and non-existence of expansive homeomorphisms are known. An open interval, a 1-sphere and a closed 2-disk do not admit expansive homeomorphisms (Bryant [1], Jakobsen and Utz [2]). An open 2n-ball $(n \ge 1)$ and an r-dimensional torus $(r \ge 2)$ admit expansive homeomorphisms (Reddy [3]). In this paper, we prove the followings.

THEOREM 1. Let M be a closed n-manifold ($n \ge 1$), and J be an open interval. Then there exists an expansive homeomorphism of $M \times J$.

THEOREM 2. If M is a closed n-manifold $(n \ge 1)$, there exist an expansive homeomorphism of $Int(M^*\{point\})$. Where P^*Q is the join of P and Q, and Int M is the interior of M.

COROLLARY. There exists an expansive homeomorphism of an open n-ball $(n \ge 2)$.

The auther thanks Prof. K. Kobayashi for his helpful advices.

2. Proof of Theorem 1.

Let M be a closed n-manifold with a metric d. J=(0,2) and R^n be an open interval with a standard metric d_1 and an n-dimensional Euclidean space with a standard metric d_n , respectively. And put $U(x,\varepsilon)=\{y\in M\mid d(y,x)<\varepsilon\}$, $U_n(z,\delta)=\{y\in R^n\mid d_n(y,z)<\delta\}$. We define the metric ρ of $M\times J$ to be $d\times d_1$ (where $d\times d_1((x,t),(y,s))=d(x,y)+d_1(t,s)$ and $x,y\in M$ and $t,s\in J$), and I_k $(k\geqq 0)$ to be $I_k=\left[\frac{1}{k+1},\frac{1}{k}\right]$ $(k\in N)$ and $I_0=[1,2)$. Put $A_k=M\times I_k$.

First, we define several homeomorphisms of A_1 . We will use these homeomorphisms for constructing an expansive homeomorphism of $M \times J$. For any